35 research outputs found

    Rb and p53 Liver Functions Are Essential for Xenobiotic Metabolism and Tumor Suppression

    Get PDF
    The tumor suppressors Retinoblastoma (Rb) and p53 are frequently inactivated in liver diseases, such as hepatocellular carcinomas (HCC) or infections with Hepatitis B or C viruses. Here, we discovered a novel role for Rb and p53 in xenobiotic metabolism, which represent a key function of the liver for metabolizing therapeutic drugs or toxins. We demonstrate that Rb and p53 cooperate to metabolize the xenobiotic 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). DDC is metabolized mainly by cytochrome P450 (Cyp)3a enzymes resulting in inhibition of heme synthesis and accumulation of protoporphyrin, an intermediate of heme pathway. Protoporphyrin accumulation causes bile injury and ductular reaction. We show that loss of Rb and p53 resulted in reduced Cyp3a expression decreased accumulation of protoporphyrin and consequently less ductular reaction in livers of mice fed with DDC for 3 weeks. These findings provide strong evidence that synergistic functions of Rb and p53 are essential for metabolism of DDC. Because Rb and p53 functions are frequently disabled in liver diseases, our results suggest that liver patients might have altered ability to remove toxins or properly metabolize therapeutic drugs. Strikingly the reduced biliary injury towards the oxidative stress inducer DCC was accompanied by enhanced hepatocellular injury and formation of HCCs in Rb and p53 deficient livers. The increase in hepatocellular injury might be related to reduce protoporphyrin accumulation, because protoporphrin is well known for its anti-oxidative activity. Furthermore our results indicate that Rb and p53 not only function as tumor suppressors in response to carcinogenic injury, but also in response to non-carcinogenic injury such as DDC

    Par1b induces asymmetric inheritance of plasma membrane domains via LGN-dependent mitotic spindle orientation in proliferating hepatocytes

    Get PDF
    The development and maintenance of polarized epithelial tissue requires a tightly controlled orientation of mitotic cell division relative to the apical polarity axis. Hepatocytes display a unique polarized architecture. We demonstrate that mitotic hepatocytes asymmetrically segregate their apical plasma membrane domain to the nascent daughter cells. The non-polarized nascent daughter cell can form a de novo apical domain with its new neighbor. This asymmetric segregation of apical domains is facilitated by a geometrically distinct “apicolateral” subdomain of the lateral surface present in hepatocytes. The polarity protein partitioning-defective 1/microtubule-affinity regulating kinase 2 (Par1b/MARK2) translates this positional landmark to cortical polarity by promoting the apicolateral accumulation of Leu-Gly-Asn repeat-enriched protein (LGN) and the capture of nuclear mitotic apparatus protein (NuMA)–positive astral microtubules to orientate the mitotic spindle. Proliferating hepatocytes thus display an asymmetric inheritance of their apical domains via a mechanism that involves Par1b and LGN, which we postulate serves the unique tissue architecture of the developing liver parenchyma

    Atypical E2Fs either Counteract or Cooperate with RB during Tumorigenesis Depending on Tissue Context

    Get PDF
    Simple Summary In virtually all human malignancies, the CDK-RB-E2F pathway is dysregulated resulting in the activation of the E2F transcriptional network. Rb and atypical E2Fs are the most important negative regulators of E2F-dependent transcription during tumorigenesis. However, it is unknown whether they cooporate or act independently in tumor development. Here we show that combined loss of RB and atypical E2Fs in mice enhances tumorigenesis in the liver, while in the pituitary gland, we observe inhibition of tumorigenesis. These findings suggest that the interaction between RB and atypical E2Fs in controlling tumorigenesis occurs in a tissue cell-type specific manner. E2F-transcription factors activate many genes involved in cell cycle progression, DNA repair, and apoptosis. Hence, E2F-dependent transcription must be tightly regulated to prevent tumorigenesis, and therefore metazoan cells possess multiple E2F regulation mechanisms. The best-known is the Retinoblastoma protein (RB), which is mutated in many cancers. Atypical E2Fs (E2F7 and -8) can repress E2F-target gene expression independently of RB and are rarely mutated in cancer. Therefore, they may act as emergency brakes in RB-mutated cells to suppress tumor growth. Currently, it is unknown if and how RB and atypical E2Fs functionally interact in vivo. Here, we demonstrate that mice with liver-specific combinatorial deletion of Rb and E2f7/8 have reduced life-spans compared to E2f7/8 or Rb deletion alone. This was associated with increased proliferation and enhanced malignant progression of liver tumors. Hence, atypical repressor E2Fs and RB cooperatively act as tumor suppressors in hepatocytes. In contrast, loss of either E2f7 or E2f8 largely prevented the formation of pituitary tumors in Rb+/- mice. To test whether atypical E2Fs can also function as oncogenes independent of RB loss, we induced long-term overexpression of E2f7 or E2f8 in mice. E2F7 and -8 overexpression increased the incidence of tumors in the lungs, but not in other tissues. Collectively, these data show that atypical E2Fs can promote but also inhibit tumorigenesis depending on tissue type and RB status. We propose that the complex interactions between atypical E2Fs and RB on maintenance of genetic stability underlie this context-dependency

    Inhibition of polyploidization in Pten-deficient livers reduces steatosis

    Get PDF
    The tumour suppressor PTEN is a negative regulator of the PI3K/AKT signalling pathway. Liver-specific deletion of Pten in mice results in the hyper-activation PI3K/AKT signalling accompanied by enhanced genome duplication (polyploidization), marked lipid accumulation (steatosis) and formation of hepatocellular carcinomas. However, it is unknown whether polyploidization in this model has an impact on the development of steatosis and the progression towards liver cancer. Here, we used a liver-specific conditional knockout approach to delete Pten in combination with deletion of E2f7/8, known key inducers of polyploidization. As expected, Pten deletion caused severe steatosis and liver tumours accompanied by enhanced polyploidization. Additional deletion of E2f7/8 inhibited polyploidization, alleviated Pten-induced steatosis without affecting lipid species composition and accelerated liver tumour progression. Global transcriptomic analysis showed that inhibition of polyploidization in Pten-deficient livers resulted in reduced expression of genes involved in energy metabolism, including PPAR-gamma signalling. However, we find no evidence that deregulated genes in Pten-deficient livers are direct transcriptional targets of E2F7/8, supporting that reduction in steatosis and progression towards liver cancer are likely consequences of inhibiting polyploidization. Lastly, flow cytometry and image analysis on isolated primary wildtype mouse hepatocytes provided further support that polyploid cells can accumulate more lipid droplets than diploid hepatocytes. Collectively, we show that polyploidization promotes steatosis and function as an important barrier against liver tumour progression in Pten-deficient livers

    Inhibition of polyploidization in Pten-deficient livers reduces steatosis

    Get PDF
    The tumour suppressor PTEN is a negative regulator of the PI3K/AKT signalling pathway. Liver-specific deletion of Pten in mice results in the hyper-activation PI3K/AKT signalling accompanied by enhanced genome duplication (polyploidization), marked lipid accumulation (steatosis) and formation of hepatocellular carcinomas. However, it is unknown whether polyploidization in this model has an impact on the development of steatosis and the progression towards liver cancer. Here, we used a liver-specific conditional knockout approach to delete Pten in combination with deletion of E2f7/8, known key inducers of polyploidization. As expected, Pten deletion caused severe steatosis and liver tumours accompanied by enhanced polyploidization. Additional deletion of E2f7/8 inhibited polyploidization, alleviated Pten-induced steatosis without affecting lipid species composition and accelerated liver tumour progression. Global transcriptomic analysis showed that inhibition of polyploidization in Pten-deficient livers resulted in reduced expression of genes involved in energy metabolism, including PPAR-gamma signalling. However, we find no evidence that deregulated genes in Pten-deficient livers are direct transcriptional targets of E2F7/8, supporting that reduction in steatosis and progression towards liver cancer are likely consequences of inhibiting polyploidization. Lastly, flow cytometry and image analysis on isolated primary wildtype mouse hepatocytes provided further support that polyploid cells can accumulate more lipid droplets than diploid hepatocytes. Collectively, we show that polyploidization promotes steatosis and function as an important barrier against liver tumour progression in Pten-deficient livers

    Surgical resection and radiofrequency ablation initiate cancer in cytokeratin-19(+)- liver cells deficient for p53 and Rb

    Get PDF
    The long term prognosis of liver cancer patients remains unsatisfactory because of cancer recurrence after surgical interventions, particularly in patients with viral infections. Since hepatitis B and C viral proteins lead to inactivation of the tumor suppressors p53 and Retinoblastoma (Rb), we hypothesize that surgery in the context of p53/Rb inactivation initiate de novo tumorigenesis. We, therefore, generated transgenic mice with hepatocyte and cholangiocyte/liver progenitor cell (LPC)-specific deletion of p53 and Rb, by interbreeding conditional p53/Rb knockout mice with either Albumin-cre or Cytokeratin-19-cre transgenic mice. We show that liver cancer develops at the necrotic injury site after surgical resection or radiofrequency ablation in p53/Rb deficient livers. Cancer initiation occurs as a result of specific migration, expansion and transformation of cytokeratin-19+-liver (CK-19+) cells. At the injury site migrating CK-19+ cells formed small bile ducts and adjacent cells strongly expressed the transforming growth factor β (TGFβ). Isolated cytokeratin-19+ cells deficient for p53/Rb were resistant against hypoxia and TGFβ-mediated growth inhibition. CK-19+ specific deletion of p53/Rb verified that carcinomas at the injury site originates from cholangiocytes or liver progenitor cells. These findings suggest that human liver patients with hepatitis B and C viral infection or with mutations for p53 and Rb are at high risk to develop tumors at the surgical intervention site

    Rb and p53 Liver Functions Are Essential for Xenobiotic Metabolism and Tumor Suppression

    No full text
    The tumor suppressors Retinoblastoma (Rb) and p53 are frequently inactivated in liver diseases, such as hepatocellular carcinomas (HCC) or infections with Hepatitis B or C viruses. Here, we discovered a novel role for Rb and p53 in xenobiotic metabolism, which represent a key function of the liver for metabolizing therapeutic drugs or toxins. We demonstrate that Rb and p53 cooperate to metabolize the xenobiotic 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). DDC is metabolized mainly by cytochrome P450 (Cyp)3a enzymes resulting in inhibition of heme synthesis and accumulation of protoporphyrin, an intermediate of heme pathway. Protoporphyrin accumulation causes bile injury and ductular reaction. We show that loss of Rb and p53 resulted in reduced Cyp3a expression decreased accumulation of protoporphyrin and consequently less ductular reaction in livers of mice fed with DDC for 3 weeks. These findings provide strong evidence that synergistic functions of Rb and p53 are essential for metabolism of DDC. Because Rb and p53 functions are frequently disabled in liver diseases, our results suggest that liver patients might have altered ability to remove toxins or properly metabolize therapeutic drugs. Strikingly the reduced biliary injury towards the oxidative stress inducer DCC was accompanied by enhanced hepatocellular injury and formation of HCCs in Rb and p53 deficient livers. The increase in hepatocellular injury might be related to reduce protoporphyrin accumulation, because protoporphrin is well known for its anti-oxidative activity. Furthermore our results indicate that Rb and p53 not only function as tumor suppressors in response to carcinogenic injury, but also in response to non-carcinogenic injury such as DDC

    Combined loss of Rb and p53 suppresses protoporphyrin accumulation, ductular reaction and Cyp3a expression in livers of DDC-fed mice.

    No full text
    <p>(<b>A</b>) Representative pictures of H&E and CK19 staining on liver sections from mice of indicated genotypes after 3 weeks of DDC feeding. Arrows indicate protoporphyrin accumulation. (<b>B</b>) Semi-quantitative analysis of percentage area of protoporphyrin accumulation from mice fed with normal chow or 3-weeks DDC diet (n = 5 per group). (<b>C</b>) (<b>D</b>) (<b>E</b>) Expression of <i>CK19</i>, <i>Cyp3a11</i> and <i>FECH</i> was measured by qPCR in livers of indicated genotypes. -DDC, <i>Rb</i><sup><i>f/ f</i></sup><i>; p53</i><sup><i>f/f</i></sup>, were normalized to 1. Data presented as average ± SEM. * P < 0.05 compared to +DDC, <i>Rb</i><sup><i>f/ f</i></sup><i>; p53</i><sup><i>f/f</i></sup>, # P < 0.05 compared to +DDC, <i>Rb</i><sup>Δ/Δ</sup>.</p

    Scheme for the role of RB and p53 in DDC metabolism.

    No full text
    <p>DDC interacts with Cyp in particular Cyp3a to form <i>N</i>-methyl protoporphyrin IX which inhibits ferrochelatase causing an accumulation of protoporphyrin in the bile ducts. Bile duct injury induces ductular reaction and inflammation. In addition, DDC induces reactive oxygen species (ROS) and oxidative stress causing hepatocellular injury. Protoporphyrin, on the other hand, acts as an antioxidant and protects hepatocytes. Rb and p53 are important for Cyp expression. Oxidative stress activates Rb and p53. Loss of Rb and p53 results in reduced expression of Cyp3a, therefore less production of the ferrochelatase inhibitor and thereby prevents the accumulation of its substrate protophorphyrin. Consequently, less bile injury and ductular reaction was observed. The reduction of protoporphyrin, an antioxidant, increases oxidative induced hepatocellular injury and later liver tumors develop.</p
    corecore