16 research outputs found

    Mapping of zones potentially occupied by Aedes vexans and Culex poicilipes mosquitoes, the main vectors of Rift Valley fever in Senegal

    Get PDF
    A necessary condition for Rift Valley fever (RVF) emergence is the presence of Aedes (Aedimorphus) vexans and Culex (Culex) poicilipes mosquitoes carrying the arbovirus and responsible for the infection. This paper presents a detailed mapping in the Sahelian region of Senegal of zones potentially occupied by these mosquitoes (ZPOMs) whose population density is directly linked to ecozones in the vicinity of small ponds. The vectors habitats and breeding sites have been characterized through an integrated approach combining remote sensing technology, geographical information systems, geographical positioning systems and field observations for proper geo-referencing. From five SPOT-5 images (~10 m spatial resolution) with appropriate channels, a meridional composite transect of 290 x 60 km was first constructed at the height of the summer monsoon. Subsequent ZPOMs covered major ecozones from north to south with different hydrological environments and different patterns pond distributions. It was found that an overall area of 12,817 ha ± 10% (about 0.8% of the transect) is occupied by ponds with an average ZPOM 17 times larger than this (212,813 ha ± 10% or about 14% of the transect). By comparing the very humid year of 2003 with 2006 which had just below normal rainfall, the ZPOMs inter-annual variability was analyzed in a sandy-clayey ecozone with an important hydrofossil riverbed within the Ferlo region of Senegal. Very probably contributing to an increased abundance of vectors by the end of August 2003, it was shown that the aggregate pond area was already about 22 times larger than in August 2006, corresponding to an approximately five times larger total ZPOM. The results show the importance of pin-pointing small ponds (sizes down to 0.1 ha) and their geographical distribution in order to assess animal exposure to the RVF vectors

    Climate impact on malaria in northern Burkina Faso

    No full text
    The Paluclim project managed by the French Centre National d’Etudes Spatiales (CNES) found that total rainfall for a 3-month period is a confounding factor for the density of malaria vectors in the region of Nouna in the Sahel administrative territory of northern Burkina Faso. Following the models introduced in 1999 by Craig et al. and in 2003 by Tanser et al., a climate impact model for malaria risk (using different climate indices) was created. Several predictions of this risk at different temporal scales (i.e. seasonal, inter-annual and low-frequency) were assessed using this climate model. The main result of this investigation was the discovery of a significant link between malaria risk and low-frequency rainfall variability related to the Atlantic Multi-decadal Oscillation (AMO). This result is critical for the health information systems in this region. Knowledge of the AMO phases would help local authorities to organise preparedness and prevention of malaria, which is of particular importance in the climate change context

    Rift Valley fever in a zone potentially occupied by Aedes vexans in Senegal: dynamics and risk mapping

    Get PDF
    This paper presents an analysis of the interaction between the various variables associated with Rift Valley fever (RVF) such as the mosquito vector, available hosts and rainfall distribution. To that end, the varying zones potentially occupied by mosquitoes (ZPOM), rainfall events and pond dynamics, and the associated exposure of hosts to the RVF virus by Aedes vexans, were analyzed in the Barkedji area of the Ferlo, Senegal, during the 2003 rainy season. Ponds were identified by remote sensing using a high-resolution SPOT-5 satellite image. Additional data on ponds and rainfall events from the Tropical Rainfall Measuring Mission were combined with in-situ entomological and limnimetric measurements, and the localization of vulnerable ruminant hosts (data derived from QuickBird satellite). Since “Ae. vexans productive events” are dependent on the timing of rainfall for their embryogenesis (six days without rain are necessary to trigger hatching), the dynamic spatio-temporal distribution of Ae. vexans density was based on the total rainfall amount and pond dynamics. Detailed ZPOM mapping was obtained on a daily basis and combined with aggressiveness temporal profiles. Risks zones, i.e. zones where hazards and vulnerability are combined, are expressed by the percentages of parks where animals are potentially exposed to mosquito bites. This new approach, simply relying upon rainfall distribution evaluated from space, is meant to contribute to the implementation of a new, operational early warning system for RVF based on environmental risks linked to climatic and environmental conditions

    TerraSAR-X high-resolution radar remote sensing: an operational warning system for Rift Valley fever risk

    Get PDF
    Abstract. In the vicinity of the Barkedji village (in the Ferlo region of Senegal), the abundance and aggressiveness of the vector mosquitoes for Rift Valley fever (RVF) are strongly linked to rainfall events and associated ponds dynamics. Initially, these results were obtained from spectral analysis of high-resolution (~10 m) Spot-5 images, but, as a part of the French AdaptFVR project, identification of the free water dynamics within ponds was made with the new high-resolution (down to 3-meter pixels), Synthetic Aperture Radar satellite (TerraSAR-X) produced by Infoterra GmbH, Friedrichshafen/Potsdam, Germany. During summer 2008, within a 30 x 50 km radar image, it was found that identified free water fell well within the footprints of ponds localized by optical data (i.e. Spot-5 images), which increased the confidence in this new and complementary remote sensing technique. Moreover, by using near real-time rainfall data from the Tropical Rainfall Measuring Mission (TRMM), NASA/JAXA joint mission, the filling-up and flushingout rates of the ponds can be accurately determined. The latter allows for a precise, spatio-temporal mapping of the zones potentially occupied by mosquitoes capable of revealing the variability of pond surfaces. The risk for RVF infection of gathered bovines and small ruminants (~1 park/km 2) can thus be assessed. This new operational approach (which is independent of weather conditions) is an important development in the mapping of risk components (i.e. hazards plus vulnerability) related to RVF transmission during the summer monsoon, thus contributing to a RVF early warning system

    Quasi-decadal and inter-decadal climate fluctuations in the Pacific Ocean from a CGCM

    No full text
    International audienceDiagnostic analyses in the Pacific, have revealed distinct quasi-decadal (QD) and inter-decadal (ID) climate fluctuations with coherent varying patterns of sea surface temperature (SST) and sea level pressure (SLP) anomalies. From a 200-year CGCM simulation, distinct low-frequency fluctuations are also obtained: QD (i.e., 8-12 years period band) and ID (i.e., 18-25 years period band). Traced modeled QD evolution reveals equatorial SST anomalies resembling ENSO, while tropical recharge/discharge mechanisms seem to be operating. The traced modeled ID evolution reveals high latitudes spatially coherent patterns, with maximum SST anomalies in the vicinity of the subarctic frontal zone (SAFZ) and subtropical gyres through advection. Contrary to QD SST anomalies, the modeled ID SST anomalies peak away from the equator as observed. QD fluctuations may then be viewed as low-frequency ENSO phenomena, while ID fluctuations may set-up thermal background modulating frequency and intensity of ENSO

    Mapping Entomological Dengue Risk Levels in Martinique Using High-Resolution Remote-Sensing Environmental Data

    No full text
    Controlling dengue virus transmission mainly involves integrated vector management. Risk maps at appropriate scales can provide valuable information for assessing entomological risk levels. Here, results from a spatio-temporal model of dwellings potentially harboring Aedes aegypti larvae from 2009 to 2011 in Tartane (Martinique, French Antilles) using high spatial resolution remote-sensing environmental data and field entomological and meteorological information are presented. This tele-epidemiology methodology allows monitoring the dynamics of diseases closely related to weather/climate and environment variability. A Geoeye-1 image was processed to extract landscape elements that could surrogate societal or biological information related to the life cycle of Aedes vectors. These elements were subsequently included into statistical models with random effect. Various environmental and meteorological conditions have indeed been identified as risk/protective factors for the presence of Aedes aegypti immature stages in dwellings at a given date. These conditions were used to produce dynamic high spatio-temporal resolution maps from the presence of most containers harboring larvae. The produced risk maps are examples of modeled entomological maps at the housing level with daily temporal resolution. This finding is an important contribution to the development of targeted operational control systems for dengue and other vector-borne diseases, such as chikungunya, which is also present in Martinique
    corecore