32 research outputs found

    Influence of Abiotic Factors on the Phytochemical Profile of Two Species of Artemisia: A. herba alba Asso and A. mesatlantica Maire

    Get PDF
    The species of Artemisia are well known in the Mediterranean region, especially in Morocco, for their traditional uses and health benefit. In this study, we were interested in two species of Artemisia, namely A. herba alba Asso and A. mesatlantica Maire. These species were collected from different soils of the Central Middle Atlas (loamy, stony, limestone and rocky soil) with different atmospheres. Extraction of essential oils from the leaves and flowering tops was carried out by hydrodistillation in Clevenger apparatus. Chemical composition analysis was further carried out using gas chromatography coupled with mass spectrometry (GC-MS). Principal component analysis (PCA) was performed to determine the similarities and dissimilarities in the chemical compositions of these six essential oils. The results obtained showed that the essential oil contents extracted from the flowering tops vary from one species to another according to the place of harvest, altitude, soil type and climate. The essential oil yield is between 0.84% and 2.19% (mL/100 g). Chemical analysis revealed that the chemotype of A. herba alba in limestone soil with a subhumid to humid atmosphere is trans-thujone (33.78%), while camphor (46.19%) is for limestone soil with a semi-arid atmosphere, vetivenic acid (14.91%) and davana ether (14.64%) are for limestone soil with a semi-arid and arid atmosphere and camphor (18.39%) is for loamy and stony soil with a semi-arid atmosphere. As for A. mesatlantica from a rocky soil on limestone with a subhumid to humid atmosphere, the main component is camphor (44.86%), and that of limestone soil with a subhumid to the humid atmosphere trans-thujone (41.08%). In addition, HCA affirmed the PCA and allowed us to distinguish between four groups. Our findings observed differences in the chemical compositions of the isolated essential oils most likely related to many factors such as the climates in the regions of the samples collected, altitudes and soil types

    Phytochemical Analysis, Antimicrobial and Antioxidant Properties of Thymus zygis L. and Thymus willdenowii Boiss. Essential Oils

    Get PDF
    Essential oils (EOs) are chemical products produced by odoriferous glands from a variety of plants. These essential oils have many health benefits: antiseptic, anti-inflammatory and antimicrobial activities. So due to these medicinal properties, the present study was designed to analyze essential oils of Thymus zygis L. and Thymus willdenowii Boiss. for their chemical composition and biological activities. These two thyme species were collected from the region of Ifrane, Middle Atlas of Morocco. The EO was obtained by hydrodistillation, and the yields were 5.25% for T. zygis and 3.00% for T. willdenowii. The chemical composition of the EOs was analyzed by gas chromatography coupled with mass spectrometry (GC-MS), and the results showed that T. zygis EO is dominated by carvacrol (52.5%), o-cymene (23.14%), and thymol (9.68%), while the EO of T. willdenowii contains germacrene D (16.51%), carvacrol (16.19%), and geranyl acetate (8.35%) as major compounds. The antioxidant activity assessed by Diphenylpicrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays revealed that both EOs have excellent antioxidant activities; by DPPH it resulted in IC50 = 6.13 ± 0.11 for T. zygis and 6.78 ± 0.3 µg/mL for T. willdenowii, while the one by FRAP yielded EC50 = 2.46 ± 0.01 (T. zygis) and 5.17 ± 0.2 (T. willdenowii) µg/mL. The antimicrobial activity of the two essential oils was evaluated against six bacterial strains and five fungal strains by the disk diffusion method to determine the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Minimum Fungicidal Concentration (MFC). The EOs revealed variable antimicrobial activities against the different tested microbial strains and showed strong antimicrobial activities, even against strains known as multi-resistant to antibiotics (Acinetobacter baumannii) at low concentrations (2 µL/mL). T. zygis EO showed the most powerful activity against all the studied bacteria, while that of T. willdenowii recorded moderate activity when tested against Shigella dysenteriae and Salmonella Typhi. With inhibition diameters that vary between 75 mm and 84 mm for concentrations of 2 µL/mL up to 12 µL/mL, S. aureus was shown to be the most sensitive to T. zygis EO. For the antifungal activity test, T. zygis EO showed the best inhibition diameters compared to T. willdenowii EO. These results showed that T. zygis EO has more powerful antioxidant and antimicrobial activities than T. willdenowii EO, therefore, we deduce that thyme EOs are excellent antioxidants, they have strong antimicrobial properties, and may in the future represent new sources of natural antiseptics that can be used in pharmaceutical and food industry

    Chemical Composition, Antioxidant and Antibacterial Activities of Thymus broussonetii Boiss and Thymus capitatus (L.) Hoffmann and Link Essential Oils

    Get PDF
    Thymus capitatus and Thymus broussonnetii are two Moroccan endemic medicinal plants used traditionally by the local population. The present study aims to investigate their essential oil chemical composition, antioxidant and antibacterial activities. The chemical composition of the essential oils was determined using the GC-MS analysis, the antioxidant activity assessed using DPPH and FRAP methods while the antimicrobial activity was evaluated against nine bacteria species tested (Enterococcus faecalis, Serratia fonticola, Acinetobacter baumannii, Klebsiella oxytoca, sensitive Klebsiella pneumoniae, sensitive Escherichia coli, resistant Escherichia coli, resistant Staphylococcus aureus and Enterobacter aerogenes). The major identified compounds of T. capitatus essential oil where carvacrol (75%) and p-cymene (10.58%) while carvacrol (60.79%), thymol (12.9%), p-cymene (6.21%) and gamma-terpinene (4.47%) are the main compounds in T. broussonnetii essential oil. The bioactivity of the essential oils of the two species of thyme was explained by their richness in oxygenated monoterpenes known for their great effectiveness with an IC50 of 3.48 +/- 0.05 and 4.88 +/- 0.04 mu L/mL and EC50 of 0.12 +/- 0.01 and 0.20 +/- 0.02 mu L/mL in the DPPH and FRAP assays, respectively, with an important antibacterial activity. These results encourage the use of these plants as a source of natural antioxidants, and antibacterial additives, to protect food from oxidative damage and to eliminate bacteria that are responsible for nosocomial infections.Peer reviewe

    Chemical Composition, Antioxidant and Antibacterial Activities of Thymus broussonetii Boiss and Thymus capitatus (L.) Hoffmann and Link Essential Oils

    Get PDF
    Thymus capitatus and Thymus broussonnetii are two Moroccan endemic medicinal plants used traditionally by the local population. The present study aims to investigate their essential oil chemical composition, antioxidant and antibacterial activities. The chemical composition of the essential oils was determined using the GC-MS analysis, the antioxidant activity assessed using DPPH and FRAP methods while the antimicrobial activity was evaluated against nine bacteria species tested (Enterococcus faecalis, Serratia fonticola, Acinetobacter baumannii, Klebsiella oxytoca, sensitive Klebsiella pneumoniae, sensitive Escherichia coli, resistant Escherichia coli, resistant Staphylococcus aureus and Enterobacter aerogenes). The major identified compounds of T. capitatus essential oil where carvacrol (75%) and p-cymene (10.58%) while carvacrol (60.79%), thymol (12.9%), p-cymene (6.21%) and γ-terpinene (4.47%) are the main compounds in T. broussonnetii essential oil. The bioactivity of the essential oils of the two species of thyme was explained by their richness in oxygenated monoterpenes known for their great effectiveness with an IC50 of 3.48 ± 0.05 and 4.88 ± 0.04 μL/mL and EC50 of 0.12 ± 0.01 and 0.20 ± 0.02 μL/mL in the DPPH and FRAP assays, respectively, with an important antibacterial activity. These results encourage the use of these plants as a source of natural antioxidants, and antibacterial additives, to protect food from oxidative damage and to eliminate bacteria that are responsible for nosocomial infections

    Chemical Composition, Antioxidant and Antibacterial Activities of Thymus broussonetii Boiss and Thymus capitatus (L.) Hoffmann and Link Essential Oils

    Get PDF
    Thymus capitatus and Thymus broussonnetii are two Moroccan endemic medicinal plants used traditionally by the local population. The present study aims to investigate their essential oil chemical composition, antioxidant and antibacterial activities. The chemical composition of the essential oils was determined using the GC-MS analysis, the antioxidant activity assessed using DPPH and FRAP methods while the antimicrobial activity was evaluated against nine bacteria species tested (Enterococcus faecalis, Serratia fonticola, Acinetobacter baumannii, Klebsiella oxytoca, sensitive Klebsiella pneumoniae, sensitive Escherichia coli, resistant Escherichia coli, resistant Staphylococcus aureus and Enterobacter aerogenes). The major identified compounds of T. capitatus essential oil where carvacrol (75%) and p-cymene (10.58%) while carvacrol (60.79%), thymol (12.9%), p-cymene (6.21%) and γ-terpinene (4.47%) are the main compounds in T. broussonnetii essential oil. The bioactivity of the essential oils of the two species of thyme was explained by their richness in oxygenated monoterpenes known for their great effectiveness with an IC50 of 3.48 ± 0.05 and 4.88 ± 0.04 μL/mL and EC50 of 0.12 ± 0.01 and 0.20 ± 0.02 μL/mL in the DPPH and FRAP assays, respectively, with an important antibacterial activity. These results encourage the use of these plants as a source of natural antioxidants, and antibacterial additives, to protect food from oxidative damage and to eliminate bacteria that are responsible for nosocomial infections

    Influence of Abiotic Factors on the Phytochemical Profile of Two Species of Artemisia : A. herba alba Asso and A. mesatlantica Maire

    Get PDF
    The species of Artemisia are well known in the Mediterranean region, especially in Morocco, for their traditional uses and health benefit. In this study, we were interested in two species of Artemisia, namely A. herba alba Asso and A. mesatlantica Maire. These species were collected from different soils of the Central Middle Atlas (loamy, stony, limestone and rocky soil) with different atmospheres. Extraction of essential oils from the leaves and flowering tops was carried out by hydrodistillation in Clevenger apparatus. Chemical composition analysis was further carried out using gas chromatography coupled with mass spectrometry (GC-MS). Principal component analysis (PCA) was performed to determine the similarities and dissimilarities in the chemical compositions of these six essential oils. The results obtained showed that the essential oil contents extracted from the flowering tops vary from one species to another according to the place of harvest, altitude, soil type and climate. The essential oil yield is between 0.84% and 2.19% (mL/100 g). Chemical analysis revealed that the chemotype of A. herba alba in limestone soil with a subhumid to humid atmosphere is trans-thujone (33.78%), while camphor (46.19%) is for limestone soil with a semi-arid atmosphere, vetivenic acid (14.91%) and davana ether (14.64%) are for limestone soil with a semi-arid and arid atmosphere and camphor (18.39%) is for loamy and stony soil with a semi-arid atmosphere. As for A. mesatlantica from a rocky soil on limestone with a subhumid to humid atmosphere, the main component is camphor (44.86%), and that of limestone soil with a subhumid to the humid atmosphere trans-thujone (41.08%). In addition, HCA affirmed the PCA and allowed us to distinguish between four groups. Our findings observed differences in the chemical compositions of the isolated essential oils most likely related to many factors such as the climates in the regions of the samples collected, altitudes and soil typesPeer reviewe

    Physicochemical characterization and antioxidant properties of essential oils of M. pulegium (L.), M. suaveolens (Ehrh.) and M. spicata (L.) from Moroccan Middle-Atlas

    Get PDF
    The cosmetics and food fields are based on the use of synthetic substances to protect their products against oxidation. However, synthetic antioxidants were reported to have negative effects on human health. The interest to develop natural antioxidants from plants has been growing in recent decades. The aim of this study was to determine the antioxidant properties of three essential oils (EOs) of M. pulegium (L.), M. suaveolens (Ehrh.) and M. spicata (L.) from the Azrou and Ifrane regions. The organoleptic characteristics, yields and physical properties were determined for the selected EOs. Their chemical compositions were identified using GC-MS; then, their antioxidant activities were evaluated using the DPPH• free radical scavenging activity and were compared with the ascorbic acid standard. The determined physicochemical parameters of dry matter and EOs demonstrated their good quality. The analysis of the EOs showed the dominance of pulegone (68.86–70.92%) and piperitenone (24.81%), piperitenone oxide (74.69–60.3%), and carvone (71.56–54.79%) and limonene (10.5–9.69%) for M. pulegium, M. suaveolens and M. spicata, respectively, from Azrou and Ifrane. Additionally, the antiradical tests demonstrated the remarkable power of these EOs, especially M. pulegium EO (IC50 = 15.93 mg/mL), which recorded the best activity compared with ascorbic acid (IC50 = 8.849 mg/mL). The obtained results indicated that these EOs could be applied as natural antioxidants in the food industry.Axencia Galega de Innovación | Ref. IN607A2019/0

    Lavandula pedunculata (Mill.) Cav. Aqueous Extract Antibacterial Activity Improved by the Addition of Salvia rosmarinus Spenn., Salvia lavandulifolia Vahl and Origanum compactum Benth

    Get PDF
    Lavender aqueous extracts are widely used in the Moroccan traditional medicine for their antibacterial properties. However, previous research have generally focused on investigating the antibacterial activity of lavender essential oils. The aim of this study is to evaluate the antibacterial activity of the Moroccan Lavandula pedunculata (Mill.) Cav. aqueous extract, alone, as well as in combination with extracts of other plant species known for their antibacterial activity: Salvia rosmarinus Spenn., Salvia lavandulifolia Vahl. and Origanum compactum Benth. We have tested the antibacterial activity of L. pedunculata, S. rosmarinus, S. lavandulifolia and O. compactum aqueous extracts individually and in combination against 34 strains using the agar dilution method. The combination effect was evaluated using the fractional inhibitory concentration (FIC). Polyphenol and tannin contents were determined using Folin-Ciocalteu reagent, and then some phenolic compounds were identified using UHPLC-MS. All the extracts displayed a large spectrum of antibacterial activity, especially against staphylococci, streptococci, Mycobacterium smegmatis and Proteus mirabilis. The minimum inhibitory concentration (MIC) values reached 0.15 ± 0.00 mg/mL for Staphylococcus warneri tested with S. lavandulifolia and 0.20 ± 0.07 mg/mL for Staphylococcus epidermidis tested with L. pedunculata or S. rosmarinus. Association of the L. pedunculata extract with S. rosmarinus, S. lavandulifolia and O. compactum showed synergistic effects (FIC ≤ 1). Moreover, the association of L. pedunculata with S. lavandulifolia was active against most of the Gram-negative strains resistant to the individual extracts. Determination of polyphenol and tannin contents showed the richness of the studied plants in these compounds. Additionally, chromatographic analysis demonstrated the high presence of rosmarinic acid in all the studied plant extracts. To our knowledge, this is the first study that shows the enhancing effect of the antibacterial activity of L. pedunculata aqueous extract combined with S. rosmarinus, S. lavandulifolia and O. compactum. These results confirm the effectiveness of the plant mixtures commonly used by traditional healers in Morocco and suggest that L. pedunculata might be used as an antibacterial agent either alone or, more efficiently, in combination with S. rosmarinus, S. lavandulifolia and O. compactum

    Lavandula pedunculata (Mill.) Cav. Aqueous Extract Antibacterial Activity Improved by the Addition of Salvia rosmarinus Spenn., Salvia lavandulifolia Vahl and Origanum compactum Benth

    Get PDF
    Lavender aqueous extracts are widely used in the Moroccan traditional medicine for their antibacterial properties. However, previous research have generally focused on investigating the antibacterial activity of lavender essential oils. The aim of this study is to evaluate the antibacterial activity of the Moroccan Lavandula pedunculata (Mill.) Cav. aqueous extract, alone, as well as in combination with extracts of other plant species known for their antibacterial activity: Salvia rosmarinus Spenn., Salvia lavandulifolia Vahl. and Origanum compactum Benth. We have tested the antibacterial activity of L. pedunculata, S. rosmarinus, S. lavandulifolia and O. compactum aqueous extracts individually and in combination against 34 strains using the agar dilution method. The combination effect was evaluated using the fractional inhibitory concentration (FIC). Polyphenol and tannin contents were determined using Folin-Ciocalteu reagent, and then some phenolic compounds were identified using UHPLC-MS. All the extracts displayed a large spectrum of antibacterial activity, especially against staphylococci, streptococci, Mycobacterium smegmatis and Proteus mirabilis. The minimum inhibitory concentration (MIC) values reached 0.15 ± 0.00 mg/mL for Staphylococcus warneri tested with S. lavandulifolia and 0.20 ± 0.07 mg/mL for Staphylococcus epidermidis tested with L. pedunculata or S. rosmarinus. Association of the L. pedunculata extract with S. rosmarinus, S. lavandulifolia and O. compactum showed synergistic effects (FIC ≤ 1). Moreover, the association of L. pedunculata with S. lavandulifolia was active against most of the Gram-negative strains resistant to the individual extracts. Determination of polyphenol and tannin contents showed the richness of the studied plants in these compounds. Additionally, chromatographic analysis demonstrated the high presence of rosmarinic acid in all the studied plant extracts. To our knowledge, this is the first study that shows the enhancing effect of the antibacterial activity of L. pedunculata aqueous extract combined with S. rosmarinus, S. lavandulifolia and O. compactum. These results confirm the effectiveness of the plant mixtures commonly used by traditional healers in Morocco and suggest that L. pedunculata might be used as an antibacterial agent either alone or, more efficiently, in combination with S. rosmarinus, S. lavandulifolia and O. compactum

    Insight into biological activities of chemically characterized extract from Marrubium vulgare L. in vitro, in vivo and in silico approaches

    Get PDF
    Aqueous extracts of Marrubium vulgare L. (M. vulgare) are widely used in traditional medicine for their therapeutic effects. Hence, this study aims to evaluate in vitro, in vivo, and in silico the biological activities of M. vulgare aqueous extract to further support their traditional use. Qualitative phytochemical tests of M. vulgare extracts showed the presence of primary and secondary metabolites, while quantitative analyses recorded revealed the contents of total phenols, flavonoids, and tannins, with values of 488.432 ± 7.825 mg/EAG gallic acid extract/g, 25.5326 ± 1.317 mg/EQ Quercetin extract/g and 23.966 ± 0.187 mg/EC catechin extract/g, respectively. Characterization of the phytochemical constituents of the extract revealed the presence of catechin and maleic acid as the most abundant while the evaluation of the antioxidant power revealed that the extract possesses significant antioxidant capacity, antimitotic potential, and antimicrobial properties against Streptococcus agalactiae and Staphylococcus epidermidis among many others. The antidiabetic activity of the extract showed a potent antihyperglycemic effect and a significant modulation of the pancreatic α-amylase activity as revealed by both in vitro and in vivo analysis, while an in silico evaluation showed that chemicals in the studied extract exhibited the aforementioned activities by targeting 1XO2 antimitotic protein, W93 antidiabetic protein and 1AJ6 antimicrobial protein, which revealed them as worthy of exploration in drug discovery odyssey. Conclusively, the result of this study demonstrates the numerous biological activities of M. vulgare and gives credence to their folkloric and traditional usage
    corecore