15 research outputs found

    Monitoring Groundwater Storage Depletion Using Gravity Recovery and Climate Experiment (GRACE) Data in Bakhtegan Catchment, Iran

    No full text
    The Bakhtegan catchment, an important agricultural region in south-western Iran, has suffered groundwater depletion in recent years. As groundwater is considered the main source of fresh water in the catchment, especially for agriculture, monitoring groundwater responses to irrigation is important. Gravity Recovery and Climate Experiment (GRACE) satellite data can help determine water mass changes in catchments and assess water volume changes. In this study, we compared GRACE-derived water mass data against groundwater volume variations measured in situ. We also assessed the efficiency of GRACE-derived data in catchments smaller than the 200,000 km2 recommended area when using GRACE. For the study period (January 2002 through December 2011), the GRACE data showed a 7.6 mm annual decline in groundwater level, with a total volume loss of 2.6 km3 during the period. The in situ monthly measurements of groundwater level showed an average depletion of 10 m in catchment aquifers during the study period. This depletion rate was supported by the recorded decrease in precipitation volume, especially in the post-drought period after 2007. These results demonstrate that GRACE can be useful tool for monitoring groundwater depletion in arid catchments

    Monitoring groundwater storage depletion using gravity recovery and climate experiment (GRACE) data in Bakhtegan catchment, Iran

    No full text
    Abstract The Bakhtegan catchment, an important agricultural region in south-western Iran, has suffered groundwater depletion in recent years. As groundwater is considered the main source of fresh water in the catchment, especially for agriculture, monitoring groundwater responses to irrigation is important. Gravity Recovery and Climate Experiment (GRACE) satellite data can help determine water mass changes in catchments and assess water volume changes. In this study, we compared GRACE-derived water mass data against groundwater volume variations measured in situ. We also assessed the efficiency of GRACE-derived data in catchments smaller than the 200,000 km2 recommended area when using GRACE. For the study period (January 2002 through December 2011), the GRACE data showed a 7.6 mm annual decline in groundwater level, with a total volume loss of 2.6 km3 during the period. The in situ monthly measurements of groundwater level showed an average depletion of 10 m in catchment aquifers during the study period. This depletion rate was supported by the recorded decrease in precipitation volume, especially in the post-drought period after 2007. These results demonstrate that GRACE can be useful tool for monitoring groundwater depletion in arid catchments

    Evaluating Impacts of Irrigation and Drought on River, Groundwater and a Terminal Wetland in the Zayanderud Basin, Iran

    No full text
    The Zayanderud Basin is an important agricultural area in central Iran. In the Basin, irrigation consumes more than 90 percent of the water used, which threatens both the downstream historical city of Isfahan and the Gavkhuni Wetland reserve—the final recipient of the river water. To analyze impacts of land use changes and the occurrence of metrological and hydrological drought, we used groundwater data from 30 wells, the standardized precipitation index (SPI) and the streamflow drought index (SDI). Changes in the wetland were analyzed using normalized difference water index (NDWI) values and water mass depletion in the Basin was also assessed with gravity recovery and climate experiment (GRACE)-derived data. The results show that in 45 out of studied 50 years, the climate can be considered as normal in respect to mean precipitation amount, but hydrological droughts exist in more than half of the recorded years. The hydrological drought occurrence increased after the 1970s when large irrigation schemes were introduced. In recent decades, the flow rate reached zero in the downstream part of the Zayanderud River. NDWI values confirmed the severe drying of the Gavkhuni Wetland on several occasions, when compared to in situ data. The water mass depletion rate in the Basin is estimated to be 30 (±5) mm annually; groundwater exploitation has reached an average of 365 Mm3 annually, with a constant annual drop of 1 to 2.5 meters in the groundwater level annually. The results demonstrate the connection between groundwater and surface water resources management and highlight that groundwater depletion and the repeated occurrence of the Zayanderud River hydrological drought are directly related to human activities. The results can be used to assess sustainability of water management in the Basin

    Evaluating impacts of irrigation and drought on river, groundwater and a terminal Wetland in the Zayanderud Basin, Iran

    No full text
    Abstract The Zayanderud Basin is an important agricultural area in central Iran. In the Basin, irrigation consumes more than 90 percent of the water used, which threatens both the downstream historical city of Isfahan and the Gavkhuni Wetland reserve—the final recipient of the river water. To analyze impacts of land use changes and the occurrence of metrological and hydrological drought, we used groundwater data from 30 wells, the standardized precipitation index (SPI) and the streamflow drought index (SDI). Changes in the wetland were analyzed using normalized difference water index (NDWI) values and water mass depletion in the Basin was also assessed with gravity recovery and climate experiment (GRACE)-derived data. The results show that in 45 out of studied 50 years, the climate can be considered as normal in respect to mean precipitation amount, but hydrological droughts exist in more than half of the recorded years. The hydrological drought occurrence increased after the 1970s when large irrigation schemes were introduced. In recent decades, the flow rate reached zero in the downstream part of the Zayanderud River. NDWI values confirmed the severe drying of the Gavkhuni Wetland on several occasions, when compared to in situ data. The water mass depletion rate in the Basin is estimated to be 30 (±5) mm annually; groundwater exploitation has reached an average of 365 Mm³ annually, with a constant annual drop of 1 to 2.5 meters in the groundwater level annually. The results demonstrate the connection between groundwater and surface water resources management and highlight that groundwater depletion and the repeated occurrence of the Zayanderud River hydrological drought are directly related to human activities. The results can be used to assess sustainability of water management in the Basin

    Evaluating the evolution of ECMWF precipitation products using observational data for Iran:from ERA40 to ERA5

    No full text
    Abstract European Center for Medium-Range Weather Forecasts Reanalysis (ERA), one of the most widely used precipitation products, has evolved from ERA-40 to ERA-20CM, ERA-20C, ERA-Interim, and ERA5. Studies evaluating the performance of individual ERA products cannot adequately assess the evolution of the products. We compared the performance of all ERA precipitation products at daily, monthly, and annual data (1980–2018) using more than 2100 Iran precipitation gauges. Results indicated that ERA-40 performed worst, followed by ERA-20CM, which showed only minor improvements over ERA-40. ERA-20C considerably outperformed its predecessors, benefiting from the assimilation of observational data. Although several previous studies have reported full superiority of ERA5 over ERA-Interim, our results revealed several shortcomings in ERA5 compared with the ERA-Interim estimates. Both ERA-Interim and ERA5 performed best overall, with ERA-Interim showing better statistical and categorical skill scores, and ERA5 performing better in estimating extreme precipitations. These results suggest that the accuracy of ERA precipitation products has improved from ERA-40 to ERA-Interim, but not consistently from ERA-Interim to ERA5. This study employed a grid-grid comparison approach by first creating a gridded reference data set through the spatial aggregation of point source observations, however, the results from a point-grid approach showed no change in the overall ranking of products (despite the slight changes in the error index values). These findings are useful for model development at a global scale and for hydrological applications in Iran

    Battling water limits to growth:lessons from water trends in the central plateau of Iran

    No full text
    Abstract The Zayandeh-Rud River Basin in the central plateau of Iran continues to grapple with water shortages due to a water-intensive development path made possible by a primarily supply-oriented water management approach to battle the water limits to growth. Despite inter-basin water transfers and increasing groundwater supply, recurring water shortages and associated tensions among stakeholders underscore key weaknesses in the current water management paradigm. There was an alarming trend of groundwater depletion in the basin’s four main aquifers in the 1993–2016 period as indicated by the results of the Mann-Kendall3 (MK3) test and Innovative Trend Analysis (ITA) of groundwater volume. The basin’s water resources declined by more than 6 BCM in 2016 compared to 2005 based on the equivalent water height (EWH) derived from monthly data (2002–2016) from the GRACE. The extensive groundwater depletion is an unequivocal evidence of reduced water availability in the face of growing basin-wide demand, necessitating water saving in all water use sectors. Implementing an integrated water resources management plan that accounts for evolving water supply priorities, growing demand and scarcity, and institutional changes is an urgent step to alleviate the growing tensions and preempt future water insecurity problems that are bound to occur if demand management approaches are delayed
    corecore