16 research outputs found

    Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks

    Get PDF
    There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease-19 (COVID-19). We aimed to a) identify complement-related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement-related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID-19. Through targeted next-generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH-related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS13). Among 381 variants in 133 patients, we identified 5 critical variants associated with severe COVID-19: rs2547438 (C3), rs2250656 (C3), rs1042580 (THBD), rs800292 (CFH) and rs414628 (CFHR1). Using age, gender and presence or absence of each variant, we developed an ANN predicting morbidity and mortality in 89.47% of the examined population. Furthermore, THBD and C3a levels were significantly increased in severe COVID-19 patients and those harbouring relevant variants. Thus, we reveal for the first time an ANN accurately predicting ICU hospitalization and death in COVID-19 patients, based on genetic variants in complement genes, age and gender. Importantly, we confirm that genetic dysregulation is associated with impaired complement phenotype.- Pfizer Pharmaceuticals(undefined

    Pretransplant Genetic Susceptibility: Clinical Relevance in Transplant-Associated Thrombotic Microangiopathy.

    No full text
    Transplant-associated thrombotic microangiopathy (TA-TMA) is a life-threatening complication of allogeneic hematopoietic cell transplantation (HCT). We hypothesized that pretransplant genetic susceptibility is evident in adult TA-TMA and further investigated the association of TMA-associated variants with clinical outcomes. We studied 40 patients with TA-TMA, donors of 18 patients and 40 control non-TMA HCT recipients, without significant differences in transplant characteristics. Genomic DNA from pretransplant peripheral blood was sequenced for TMA-associated genes. Donors presented significantly lower frequency of rare variants and variants in exonic/splicing/untranslated region (UTR) regions, compared with TA-TMA patients. Controls also showed a significantly lower frequency of rare variants in , , , and The majority of TA-TMA patients (31/40) presented with pathogenic or likely pathogenic variants. Patients refractory to conventional treatment (62%) and patients that succumbed to transplant-related mortality (65%) were significantly enriched for variants in exonic/splicing/UTR regions. In conclusion, increased incidence of pathogenic, rare and variants in exonic/splicing/UTR regions of TA-TMA patients suggests genetic susceptibility not evident in controls or donors. Notably, variants in exonic/splicing/UTR regions were associated with poor response and survival. Therefore, pretransplant genomic screening may be useful to intensify monitoring and early intervention in patients at high risk for TA-TMA
    corecore