2 research outputs found

    Post-processing and visualisation of large-scale DEM simulation data with the open-source VELaSSCo platform

    Get PDF
    Regardless of its origin, in the near future the challenge will not be how to generate data, but rather how to manage big and highly distributed data to make it more easily handled and more accessible by users on their personal devices. VELaSSCo (Visualization for Extremely Large-Scale Scientific Computing) is a platform developed to provide new visual analysis methods for large-scale simulations serving the petabyte era. The platform adopts Big Data tools/architectures to enable in-situ processing for analytics of engineering and scientific data and hardware-accelerated interactive visualization. In large-scale simulations, the domain is partitioned across several thousand nodes, and the data (mesh and results) are stored on those nodes in a distributed manner. The VELaSSCo platform accesses this distributed information, processes the raw data, and returns the results to the users for local visualization by their specific visualization clients and tools. The global goal of VELaSSCo is to provide Big Data tools for the engineering and scientific community, in order to better manipulate simulations with billions of distributed records. The ability to easily handle large amounts of data will also enable larger, higher resolution simulations, which will allow the scientific and engineering communities to garner new knowledge from simulations previously considered too large to handle. This paper shows, by means of selected Discrete Element Method (DEM) simulation use cases, that the VELaSSCo platform facilitates distributed post-processing and visualization of large engineering datasets

    Perspectives on tracking data reuse across biodata resources

    Get PDF
    c The Author(s) 2024. Published by Oxford University Press.Motivation: Data reuse is a common and vital practice in molecular biology and enables the knowledge gathered over recent decades to drive discovery and innovation in the life sciences. Much of this knowledge has been collated into molecular biology databases, such as UniProtKB, and these resources derive enormous value from sharing data among themselves. However, quantifying and documenting this kind of data reuse remains a challenge. Results: The article reports on a one-day virtual workshop hosted by the UniProt Consortium in March 2023, attended by representatives from biodata resources, experts in data management, and NIH program managers. Workshop discussions focused on strategies for tracking data reuse, best practices for reusing data, and the challenges associated with data reuse and tracking. Surveys and discussions showed that data reuse is widespread, but critical information for reproducibility is sometimes lacking. Challenges include costs of tracking data reuse, tensions between tracking data and open sharing, restrictive licenses, and difficulties in tracking commercial data use. Recommendations that emerged from the discussion include: development of standardized formats for documenting data reuse, education about the obstacles posed by restrictive licenses, and continued recognition by funding agencies that data management is a critical activity that requires dedicated resources
    corecore