527 research outputs found

    L^{2}-restriction bounds for eigenfunctions along curves in the quantum completely integrable case

    Full text link
    We show that for a quantum completely integrable system in two dimensions,the L2L^{2}-normalized joint eigenfunctions of the commuting semiclassical pseudodifferential operators satisfy restriction bounds ofthe form γϕj2ds=O(log) \int_{\gamma} |\phi_{j}^{\hbar}|^2 ds = {\mathcal O}(|\log \hbar|) for generic curves γ\gamma on the surface. We also prove that the maximal restriction bounds of Burq-Gerard-Tzvetkov are always attained for certain exceptional subsequences of eigenfunctions.Comment: Correct some typos and added some more detail in section

    MAGNETIC FLUX CONSERVATION IN THE HELIOSHEATH INCLUDING SOLAR CYCLE VARIATIONS OF MAGNETIC FIELD INTENSITY

    Get PDF
    In the heliosheath (HS), Voyager 2 has observed a flow with constant radial velocity and magnetic flux conservation. Voyager 1, however, has observed a decrease in the flow's radial velocity and an order of magnitude decrease in magnetic flux. We investigate the role of the 11 yr solar cycle variation of the magnetic field strength on the magnetic flux within the HS using a global 3D magnetohydrodynamic model of the heliosphere. We use time and latitude-dependent solar wind velocity and density inferred from Solar and Heliospheric Observatory/SWAN and interplanetary scintillations data and implemented solar cycle variations of the magnetic field derived from 27 day averages of the field magnitude average of the magnetic field at 1 AU from the OMNI database. With the inclusion of the solar cycle time-dependent magnetic field intensity, the model matches the observed intensity of the magnetic field in the HS along both Voyager 1 and 2. This is a significant improvement from the same model without magnetic field solar cycle variations, which was over a factor of two larger. The model accurately predicts the radial velocity observed by Voyager 2; however, the model predicts a flow speed ~100 km s[superscript −1] larger than that derived from LECP measurements at Voyager 1. In the model, magnetic flux is conserved along both Voyager trajectories, contrary to observations. This implies that the solar cycle variations in solar wind magnetic field observed at 1 AU does not cause the order of magnitude decrease in magnetic flux observed in the Voyager 1 data.United States. National Aeronautics and Space Administration (Earth and Space Science Fellowship Program Grant NNX14AO14H

    Accelerating the Deactivation of \u3cem\u3eSalmonella enterica\u3c/em\u3e Serovar Newport and \u3cem\u3eEscherichia coli\u3c/em\u3e O157:H7 in Dairy Manure by Modifying pH or Temperature

    Get PDF
    To assess methods for control of disease-causing bacteria in animal manures prior to field application, we manipulated the temperature or adjusted pH of dairy manure to high (3.5 to 5) or low (10 to 12) values with aluminum sulfate or hydrated lime, and inoculated the manure with Salmonella enterica serovar Newport or Escherichia coli O157:H7, then incubated the manure at ambient temperature. At pH 4.2, S. Newport was eliminated within 6 days; however at pH \u3e4.2 S. Newport was suppressed only temporarily and recovered to concentrations near the unamended controls. pH required to eliminate E. coli O157:H7 was 4.5. Both pathogens were killed by pH 11.0. The pathogens were eliminated within 2 weeks when inoculated manure was incubated at 37°C, whereas at 22°C and 4°C, the organisms persisted for much longer periods. S. Newport survived for over 300 days at 4°C, which has implications for manure spreading in colder seasons

    Athena: A New Code for Astrophysical MHD

    Full text link
    A new code for astrophysical magnetohydrodynamics (MHD) is described. The code has been designed to be easily extensible for use with static and adaptive mesh refinement. It combines higher-order Godunov methods with the constrained transport (CT) technique to enforce the divergence-free constraint on the magnetic field. Discretization is based on cell-centered volume-averages for mass, momentum, and energy, and face-centered area-averages for the magnetic field. Novel features of the algorithm include (1) a consistent framework for computing the time- and edge-averaged electric fields used by CT to evolve the magnetic field from the time- and area-averaged Godunov fluxes, (2) the extension to MHD of spatial reconstruction schemes that involve a dimensionally-split time advance, and (3) the extension to MHD of two different dimensionally-unsplit integration methods. Implementation of the algorithm in both C and Fortran95 is detailed, including strategies for parallelization using domain decomposition. Results from a test suite which includes problems in one-, two-, and three-dimensions for both hydrodynamics and MHD are given, not only to demonstrate the fidelity of the algorithms, but also to enable comparisons to other methods. The source code is freely available for download on the web.Comment: 61 pages, 36 figures. accepted by ApJ
    corecore