490 research outputs found

    Adaptive Equivalent Consumption Minimization Strategy with Rule-based Gear Selection for the Energy Management of Hybrid Electric Vehicles Equipped with Dual Clutch Transmissions

    Get PDF
    Based on observations of the behaviour of the optimal solution to the problem of energy management for plug-in hybrid electric vehicles, a novel real-time Energy Management Strategy (EMS) is proposed. In particular, dynamic programming results are used to derive a set of rules aiming at reproducing the optimal gearshift schedule in electric mode while the Adaptive Equivalent Consumption Minimization Strategy (A-ECMS) is employed to decide the powertrain operating mode and the current gear when power from the internal combustion engine is needed. In terms of total fuel consumption, simulations show that the proposed approach yields results that are close to the optimal solution and also outperforms those of the A-ECMS, a well-known EMS. One of the main aspects that differentiates the strategy here proposed from previous works is the introduction of a model to use physical considerations to estimate the energy consumption during gearshifts in dual-clutch transmissions. This, together with a series of properly tuned fuel penalties allows the controller to yield results in which there is no gear hunting behaviour

    A Methodology for Parameter Estimation of Nonlinear Single Track Models from Multibody Full Vehicle Simulation

    Get PDF
    In vehicle dynamics, simple and fast vehicle models are required, especially in the framework of real-time simulations and autonomous driving software. Therefore, a trade-off between accuracy and simulation speed must be pursued by selecting the appropriate level of detail and the corresponding simplifying assumptions based on the specific purpose of the simulation. The aim of this study is to develop a methodology for map and parameter estimation from multibody simulation results, to be used for simplified vehicle modelling focused on handling performance. In this paper, maneuvers, algorithms and results of the parameter estimation are reported, together with their integration in single track models with increasing complexity and fidelity. The agreement between the multibody model, used as reference, and four single track models is analyzed and discussed through the evaluation of the correlation index. The good match between the models validates the adopted simulation methodology both during steady-state and during transient maneuvers. In a similar way, this method could be applied to experimental data gathered from a real instrumented car rather than from a multibody model

    Light Commercial Vehicle ADAS-Oriented Modelling: An Optimization-Based Conversion Tool from Multibody to Real-Time Vehicle Dynamics Model

    Get PDF
    In the last few years, the number of Advanced Driver Assistance Systems (ADAS) on road vehicles has been increased with the aim of dramatically reducing road accidents. Therefore, the OEMs need to integrate and test these systems, to comply with the safety regulations. To lower the development cost, instead of experimental testing, many virtual simulation scenarios need to be tested for ADAS validation. The classic multibody vehicle approach, normally used to design and optimize vehicle dynamics performance, is not always suitable to cope with these new tasks; therefore, real-time lumped-parameter vehicle models implementation becomes more and more necessary. This paper aims at providing a methodology to convert experimentally validated light commercial vehicles (LCV) multibody models (MBM) into real-time lumped-parameter models (RTM). The proposed methodology involves the definition of the vehicle subsystems and the level of complexity required to achieve a good match between the simulation results obtained from the two models. Thus, an automatic vehicle model converter will be presented together with the assessment of its accuracy. An optimization phase is included into the conversion tool, to fine-tune uncertain vehicle parameters and to compensate for inherent modelling differences. The objective function of the optimization is based on typical performance indices used for vehicle longitudinal and lateral dynamics assessment. Finally, the simulation results from the original and converted models are compared during steady-state and transient tests, to prove the conversion fidelity

    On the enhancement of vehicle handling and energy efficiency of electric vehicles with multiple motors: the iCOMPOSE project

    Get PDF
    Electric vehicles with multiple motors allow torque-vectoring, i.e., the individual control of each powertrain torque. Torque-vectoring (TV) can provide: i) enhancement of vehicle safety and handling, via the generation of a direct yaw moment to shape the understeer characteristics and increase yaw and sideslip damping; and ii) energy consumption reductions, via appropriate torque allocation to each motor. The FP7 European project iCOMPOSE thoroughly addressed i) and ii). Theoretical analyses were carried out to design state-of-the art TV controllers, which were validated through: a) vehicle simulations; and b) extensive experimental tests, which were performed at rolling road facilities and proving grounds, using a Range Rover Evoque prototype equipped with four identical on-board electric powertrains. This paper provides an overview of the TV-related contributions of iCOMPOSE

    The scientist' experience in participated science communication

    Get PDF
    Since 2006 a small group of researchers from the Italian National Institute for Nuclear Physics started to realized one of the first European Researchers' Night in Europe: a one night-event, supported by the European Commission, that falls every last Friday of September to promote the researcher's figure and its work. Today, after thirteen editions, the project has evolved by involving more than 60 scientific partners and more than 400 events/year spread from the North to the South of Italy in 30 cities, captivating more than 50.000 attendees with a not negligible impact on the people and the press. During the years, the project has followed and sometimes anticipated the science communication trend, and BEES (BE a citizEn Scientist) is the last step of this long and thrilling evolution that brought to a huge public engagement in our territory. The experience, the methodology, and the major successful examples of the organized events are presented together with the results of the long term project impact

    Vanishing of the negative-sign problem of quantum Monte Carlo simulations in one-dimensional frustrated spin systems

    Full text link
    The negative-sign problem in one-dimensional frustrated quantum spin systems is solved. We can remove negative signs of the local Boltzmann weights by using a dimer basis that has the spin-reversal symmetry. Validity of this new basis is checked in a general frustrated double-spin-chain system, namely the J_0-J_1-J_2-J_3 model. The negative sign vanishes perfectly for J0+J1≤J3J_0 + J_1 \leq J_3.Comment: 4 pages, REVTeX, 4 figures in eps-file

    Power-Gating Technique for Network-on-Chip Buffers

    Get PDF
    A new approach to reducing leakage power in network-on-chip buffers is presented. The non-uniformity of buffer utilisation is leveraged across the network and power-gating is applied to scarcely utilised buffers. Instead of turning-off the buffers completely, a buffer portion is kept turned-on. This design choice has a significant performance benefit because the buffer is always able to receive network packets. Design aspects and trade-offs in a 45 nm CMOS technology are discussed and results obtained over video application benchmarks are presented. It is shown that it is possible to reduce buffer leakage by 40% without performance penalt
    • …
    corecore