16 research outputs found

    Defensive responses by a social caterpillar are tailored to different predators and change with larval instar and group size

    Get PDF
    Gregariousness in animals is widely accepted as a behavioral adaptation for protection from predation. However, predation risk and the effectiveness of a prey’s defense can be a function of several other factors, including predator species and prey size or age. The objective of this study was to determine if the gregarious habit of Malacosoma disstria caterpillars is advantageous against invertebrate natural enemies, and whether it is through dilution or cooperative defenses. We also examined the effects of larval growth and group size on the rate and success of attacks. Caterpillars of M. disstria responded with predator-specific behaviors, which led to increased survival. Evasive behaviors were used against stinkbugs, while thrashing by fourth instar caterpillars and holding on to the silk mat by second instar caterpillars was most efficient against spider attacks. Collective head flicking and biting by groups of both second and fourth instar caterpillars were observed when attacked by parasitoids. Increased larval size decreased the average number of attacks by spiders but increased the number of attacks by both stinkbugs and parasitoids. However, increased body size decreased the success rate of attacks by all three natural enemies and increased handling time for both predators. Larger group sizes did not influence the number of attacks from predators but increased the number of attacks and the number of successful attacks from parasitoids. In all cases, individual risk was lower in larger groups. Caterpillars showed collective defenses against parasitoids but not against the walking predators. These results show that caterpillars use different tactics against different natural enemies. Overall, these tactics are both more diverse and more effective in fourth instar than in second instar caterpillars, confirming that growth reduces predation risk. We also show that grouping benefits caterpillars through dilution of risk, and, in the case of parasitoids, through group defenses. The decreased tendency to aggregate in the last larval instar may therefore be linked to decreasing predation risk

    Chemical defence in chrysomelid eggs and neonate larvae

    No full text
    ABSTRACT. Eggs and neonate larvae of chrysomelid beetles (sub‐tribes Chrysomelina and Phyllodectina) were investigated for the presence of defensive substances. The two isoxazolinone glucosides (compounds 1 and 2), characteristic of the adult defence secretion, were detected in the eggs of all studied species. Compound 2, containing a nitropropionate, is always present in concentrations (above 10‐2 M), which are highly deterrent to the ant Myrmica rubra. This compound is not at all or only slightly toxic to ants at 10‐2 M. Compound 1, devoid of nitropropionate, is a minor constituent, and is neither deterrent nor toxic to ants. The five Chrysomela species studied and Phratora vitellinae also sequester salicin in their eggs in amounts highly deterrent and toxic to ants. A single Chrysomela egg often contains enough salicin to kill an ant. While the isoxazolinones are discarded with the egg shells, salicin is used by neonate larvae as a precursor for the production of salicylaldehyde in the thoracic defence glands, already functional at hatching. No salicin could be detected in the eggs of those species whose larvae produce cyclopentanoid monoterpenes, even if they feed on Salicaceae. No larva of any species seems to be able to produce detectable amounts of monoterpenes at birth. A very early defence, possible only in those species using salicin as the precursor for their defensive secretion, could be highly advantageous in protecting the clustered larvae during the long process of hatching and in avoiding cannibalism between siblings. Only trace amounts of oleic acid were found in the eggs of Gastrophysa viridula, in contrast to previous reports on its presence in large quantities in the American G. cyanea. Copyright © 1986, Wiley Blackwell. All rights reservedSCOPUS: ar.jFLWNAinfo:eu-repo/semantics/publishe
    corecore