358 research outputs found

    A dual catalytic strategy for carbon-phosphorus cross-coupling via gold and photoredox catalysis.

    Get PDF
    A new method for the P-arylation of aryldiazonium salts with H-phosphonates via dual gold and photoredox catalysis is described. The reaction proceeds smoothly at room temperature in the absence of base and/or additives, and offers an efficient approach to arylphosphonates. The reaction is proposed to proceed through a photoredox-promoted generation of an electrophilic arylgold(III) intermediate that undergoes coupling with the H-phosphonate nucleophile

    Photoinitiated oxidative addition of CF3I to gold(I) and facile aryl-CF3 reductive elimination.

    Get PDF
    Herein we report the mechanism of oxidative addition of CF3I to Au(I), and remarkably fast Caryl-CF3 bond reductive elimination from Au(III) cations. CF3I undergoes a fast, formal oxidative addition to R3PAuR (R = Cy, R = 3,5-F2-C6H4, 4-F-C6H4, C6H5, 4-Me-C6H4, 4-MeO-C6H4, Me; R = Ph, R = 4-F-C6H4, 4-Me-C6H4). When R = aryl, complexes of the type R3PAu(aryl)(CF3)I can be isolated and characterized. Mechanistic studies suggest that near-ultraviolet light (Νmax = 313 nm) photoinitiates a radical chain reaction by exciting CF3I. Complexes supported by PPh3 undergo reversible phosphine dissociation at 110 °C to generate a three-coordinate intermediate that undergoes slow reductive elimination. These processes are quantitative and heavily favor Caryl-I reductive elimination over Caryl-CF3 reductive elimination. Silver-mediated halide abstraction from all complexes of the type R3PAu(aryl)(CF3)I results in quantitative formation of Ar-CF3 in less than 1 min at temperatures as low as -10 °C

    Two Metals Are Better Than One in the Gold Catalyzed Oxidative Heteroarylation of Alkenes

    Get PDF
    We present a detailed study of the mechanism for oxidative heteroarylation, based on DFT calculations and experimental observations. We propose binuclear Au(II)–Au(II) complexes to be key intermediates in the mechanism for gold catalyzed oxidative heteroarylation. The reaction is thought to proceed via a gold redox cycle involving initial oxidation of Au(I) to binuclear Au(II)–Au(II) complexes by Selectfluor, followed by heteroauration and reductive elimination. While it is tempting to invoke a transmetalation/reductive elimination mechanism similar to that proposed for other transition metal complexes, experimental and DFT studies suggest that the key C–C bond forming reaction occurs via a bimolecular reductive elimination process (devoid of transmetalation). In addition, the stereochemistry of the elimination step was determined experimentally to proceed with complete retention. Ligand and halide effects played an important role in the development and optimization of the catalyst; our data provides an explanation for the ligand effects observed experimentally, useful for future catalyst development. Cyclic voltammetry data is presented that supports redox synergy of the Au···Au aurophilic interaction. The monometallic reductive elimination from mononuclear Au(III) complexes is also studied from which we can predict a ~ 15 kcal/mol advantage for bimetallic reductive elimination

    Phosphoramidite Gold(I)-Catalyzed Diastereo- and Enantioselective Synthesis of 3,4-Substituted Pyrrolidines

    Get PDF
    In this article the utility of phosphoramidite ligands in enantioselective AuI catalysis was explored in the development of highly diastereo- and enantioselective AuI-catalyzed cycloadditions of allenenes. A Au^I-catalyzed synthesis of 3,4-disubstituted pyrrolidines and γ-lactams is described. This reaction proceeds through the enantioselective AuI-catalyzed cyclization of allenenes to form a carbocationic intermediate that is trapped by an exogenous nucleophile, resulting in the highly diastereoselective construction of three contiguous stereogenic centers. A computational study (DFT) was also performed to gain some insight into the underlying mechanisms of these cycloadditions. The utility of this new methodology was demonstrated through the formal synthesis of (−)-isocynometrine

    Mechanistic Study of Gold(I)-Catalyzed Intermolecular Hydroamination of Allenes

    Get PDF
    The intermolecular hydroamination of allenes occurs readily with hydrazide nucleophiles, in the presence of 3-12% Ph_3PAuNTf_2. Mechanistic studies have been conducted to establish the resting state of the gold catalyst, the kinetic order of the reaction, the effect of ligand electronics on the overall rate, and the reversibility of the last steps in the catalytic cycle. We have found the overall reaction to be first order in gold and allene and zero order in nucleophile. Our studies suggest that the rate-limiting transition state for the reaction does not involve the nucleophile and that the active catalyst is monomeric in gold(I). Computational studies support an “outersphere” mechanism and predict that a two-step, no intermediate mechanism may be operative. In accord with this mechanistic proposal, the reaction can be accelerated with the use of more electron-deficient phosphine ligands on the gold(I) catalyst

    Functional group diversity by ruthenium-catalyzed olefin cross-metathesis

    Get PDF
    Ruthenium-catalyzed olefin cross-metathesis tolerates a wide range of functional groups, including phosphine-boranes, sulfides, amines, phenols, and oxazolines. The high functional group tolerance allows for the use of an olefin as a linchpin for the synthesis of a variety of bi-, tri-, and tetradentate chiral ligands with a high degree of functional group diversity
    • …
    corecore