4 research outputs found

    Hybrid Silicon Mode-Locked Laser with Improved RF Power by Impedance Matching

    Get PDF
    The mode-locked laser diode (MLLD) finds a lot of use in applications such as ultra high-speed data processing and sampling, large-capacity optical fiber communications based on optical time-division multiplexing (OTDM) systems. Integrating mode-locked lasers on silicon makes way for highly integrated silicon based photonic communication devices. The mode-locked laser being used in this thesis was built with Hybrid Silicon technology. This technology, developed by UC Santa Barbara in 2006, introduced the idea of wafer bonding a crystalline III- V layer to a Silicon-on-insulator (SOI) substrate, making integrated lasers in silicon chips possible. Furthermore, all mode-locked lasers produce phase noise, which can be a limiting factor in the performance of optical communication systems, specifically at higher bit rates. In this thesis, we design and discuss an impedance matching solution for a hybrid silicon mode-locked laser diode to lower phase noise and reduce the drive power requirements of the device. In order to develop an impedance matching solution, a thorough measurement and analysis of the impedance of the MLLD is necessary and was carried out. Then, a narrowband solution of two 0.1 pF chip capacitors in parallel is considered and examined as an impedance matching network for an operating frequency of 20 GHz. The hybrid silicon laser was packaged together in a module including the impedance- matching circuit for efficient RF injection. In conclusion, a 6 dB reduction of power required to drive the laser diode, as well as approximately a 10 dB phase noise improvement, was measured with the narrow-band solution. Also, looking ahead to possible future work, we discuss a step recovery diode (SRD) driven impulse generator, which wave-shapes the RF drive to achieve efficient injection. This novel technique takes into account the time varying impedance of the absorber as the optical pulse passes through it, to provide optimum pulse shaping

    High-Speed and Energy-Efficient Non-Volatile Silicon Photonic Memory Based on Heterogeneously Integrated Memresonator

    Full text link
    Recently, interest in programmable photonics integrated circuits has grown as a potential hardware framework for deep neural networks, quantum computing, and field programmable arrays (FPGAs). However, these circuits are constrained by the limited tuning speed and large power consumption of the phase shifters used. In this paper, introduced for the first time are memresonators, or memristors heterogeneously integrated with silicon photonic microring resonators, as phase shifters with non-volatile memory. These devices are capable of retention times of 12 hours, switching voltages lower than 5 V, an endurance of 1,000 switching cycles. Also, these memresonators have been switched using voltage pulses as short as 300 ps with a record low switching energy of 0.15 pJ. Furthermore, these memresonators are fabricated on a heterogeneous III-V/Si platform capable of integrating a rich family of active, passive, and non-linear optoelectronic devices, such as lasers and detectors, directly on-chip to enable in-memory photonic computing and further advance the scalability of integrated photonic processor circuits

    Heterogeneously Integrated Laser on Silicon with Non-Volatile Wavelength Tuning

    No full text
    The von-Neumann bottleneck has constrained computing systems from efficiently operating on the increasingly large demand in data from networks and devices. Silicon (Si) photonics offers a powerful solution for this issue by providing a platform for high-bandwidth, energy-efficient interconnects. Furthermore, memristors have emerged as a fundamental building block for non-volatile data storage and novel computing architectures with powerful in-memory processing capabilities. In this paper, we integrate an Al2O3 memristor into a heterogeneous Si quantum dot microring laser to demonstrate the first laser with non-volatile optical memory. The memristor alters the effective optical modal index of the microring laser cavity by the plasma dispersion effect in the high resistance state (HRS) or Joule heating in the low resistance state (LRS), subsequently controlling the output wavelength of the laser in a non-volatile manner. This device enables a novel pathway for future optoelectronic neuromorphic computers and optical memory chips
    corecore