40 research outputs found

    WT1 and its transcriptional cofactor BASP1 redirect the differentiation pathway of an established blood cell line

    Get PDF
    The Wilms' tumour suppressor WT1 (Wilms' tumour 1) is a transcriptional regulator that plays a central role in organogenesis, and is mutated or aberrantly expressed in several childhood and adult malignancies. We previously identified BASP1 (brain acid-soluble protein 1) as a WT1 cofactor that suppresses the transcriptional activation function of WT1. In the present study we have analysed the dynamic between WT1 and BASP1 in the regulation of gene expression in myelogenous leukaemia K562 cells. Our findings reveal that BASP1 is a significant regulator of WT1 that is recruited to WT1-binding sites and suppresses WT1-mediated transcriptional activation at several WT1 target genes. We find that WT1 and BASP1 can divert the differentiation programme of K562 cells to a non-blood cell type following induction by the phorbol ester PMA. WT1 and BASP1 co-operate to induce the differentiation of K562 cells to a neuronal-like morphology that exhibits extensive arborization, and the expression of several genes involved in neurite outgrowth and synapse formation. Functional analysis revealed the relevance of the transcriptional reprogramming and morphological changes, in that the cells elicited a response to the neurotransmitter ATP. Taken together, the results of the present study reveal that WT1 and BASP1 can divert the lineage potential of an established blood cell line towards a cell with neuronal characteristics

    Cholesterol is required for transcriptional repression by BASP1

    Get PDF
    Lipids are present within the cell nucleus, where they engage with factors involved in gene regulation. Cholesterol associates with chromatin in vivo and stimulates nucleosome packing in vitro, but its effects on specific transcriptional responses are not clear. Here, we show that the lipidated Wilms tumor 1 (WT1) transcriptional corepressor, brain acid soluble protein 1 (BASP1), interacts with cholesterol in the cell nucleus through a conserved cholesterol interaction motif. We demonstrate that BASP1 directly recruits cholesterol to the promoter region of WT1 target genes. Mutation of BASP1 to ablate its interaction with cholesterol or the treatment of cells with drugs that block cholesterol biosynthesis inhibits the transcriptional repressor function of BASP1. We find that the BASP1–cholesterol interaction is required for BASP1-dependent chromatin remodeling and the direction of transcription programs that control cell differentiation. Our study uncovers a mechanism for gene-specific targeting of cholesterol where it is required to mediate transcriptional repression

    WT1 and its transcriptional cofactor BASP1 redirect the differentiation pathway of an established blood cell line

    Get PDF
    The Wilms' tumour suppressor WT1 (Wilms' tumour 1) is a transcriptional regulator that plays a central role in organogenesis, and is mutated or aberrantly expressed in several childhood and adult malignancies. We previously identified BASP1 (brain acid-soluble protein 1) as a WT1 cofactor that suppresses the transcriptional activation function of WT1. In the present study we have analysed the dynamic between WT1 and BASP1 in the regulation of gene expression in myelogenous leukaemia K562 cells. Our findings reveal that BASP1 is a significant regulator of WT1 that is recruited to WT1-binding sites and suppresses WT1-mediated transcriptional activation at several WT1 target genes. We find that WT1 and BASP1 can divert the differentiation programme of K562 cells to a non-blood cell type following induction by the phorbol ester PMA. WT1 and BASP1 co-operate to induce the differentiation of K562 cells to a neuronal-like morphology that exhibits extensive arborization, and the expression of several genes involved in neurite outgrowth and synapse formation. Functional analysis revealed the relevance of the transcriptional reprogramming and morphological changes, in that the cells elicited a response to the neurotransmitter ATP. Taken together, the results of the present study reveal that WT1 and BASP1 can divert the lineage potential of an established blood cell line towards a cell with neuronal characteristics

    PDK1-SGK1 signaling sustains AKT-independent mTORC1 activation and confers resistance to PI3Kα inhibition

    Get PDF
    SummaryPIK3CA, which encodes the p110α subunit of PI3K, is frequently mutated and oncogenic in breast cancer. PI3Kα inhibitors are in clinical development and despite promising early clinical activity, intrinsic resistance is frequent among patients. We have previously reported that residual downstream mTORC1 activity upon treatment with PI3Kα inhibitors drives resistance to these agents. However, the mechanism underlying this phenotype is not fully understood. Here we show that in cancer cells resistant to PI3Kα inhibition, PDK1 blockade restores sensitivity to these therapies. SGK1, which is activated by PDK1, contributes to the maintenance of residual mTORC1 activity through direct phosphorylation and inhibition of TSC2. Targeting either PDK1 or SGK1 prevents mTORC1 activation, restoring the antitumoral effects of PI3Kα inhibition in resistant cells

    PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer

    Get PDF
    Abstract The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved signal transduction network in eukaryotic cells that promotes cell survival, cell growth, and cell cycle progression. Growth factor signalling to transcription factors in the PAM axis is highly regulated by multiple cross-interactions with several other signaling pathways, and dysregulation of signal transduction can predispose to cancer development. The PAM axis is the most frequently activated signaling pathway in human cancer and is often implicated in resistance to anticancer therapies. Dysfunction of components of this pathway such as hyperactivity of PI3K, loss of function of PTEN, and gain-of-function of AKT, are notorious drivers of treatment resistance and disease progression in cancer. In this review we highlight the major dysregulations in the PAM signaling pathway in cancer, and discuss the results of PI3K, AKT and mTOR inhibitors as monotherapy and in co-administation with other antineoplastic agents in clinical trials as a strategy for overcoming treatment resistance. Finally, the major mechanisms of resistance to PAM signaling targeted therapies, including PAM signaling in immunology and immunotherapies are also discussed.

    Chromatin regulation at the intersection of estrogen receptor and PI3K pathways in breast cancer

    No full text
    Estrogen Receptor (ER) and the phosphoinositide 3-kinase (PI3K) pathways participate in regulatory crosstalk in breast cancer. We identified that chromatin regulation is at the intersection of oncogenic PI3K and ER. The PI3K effectors AKT, also known as protein kinase B (PKB), and SGK (serum/glucocorticoid-regulated kinase) play a redundant role by phosphorylating the chromatin regulator KMT2D and modulating ER activity and therapy resistance

    Epigenetic Mechanisms Influencing Therapeutic Response in Breast Cancer.

    Get PDF
    The majority of breast cancers are estrogen receptor (ER)+ and agents targeting the ER signaling pathway have markedly increased survival for women with breast cancer for decades. However, therapeutic resistance eventually emerges, especially in the metastatic setting. In the past decade disrupted epigenetic regulatory processes have emerged as major contributors to carcinogenesis in many cancer types. Aberrations in chromatin modifiers and transcription factors have also been recognized as mediators of breast cancer development and therapeutic outcome, and new epigenetic-based therapies in combination with targeted therapies have been proposed. Here we will discuss recent progress in our understanding of the chromatin-based mechanisms of breast tumorigenesis, how these mechanisms affect therapeutic response to standard of care treatment, and discuss new strategies towards therapeutic intervention to overcome resistance

    FOXA1 mutations influence the therapeutic response of breast cancer by altering chromatin state

    No full text
    Forkhead box protein A1 (FOXA1) is a pioneer transcription factor that contributes to chromatin opening to allow binding of estrogen receptor (ER) in ER+ breast cancer. Mutations in FOXA1 are recurrent in breast cancer but the functional consequences of these mutations remain unknown. We identified that FOXA1 mutations are associated with worse outcomes to endocrine therapy by inducing alternative chromatin profiles and gene activity in breast cancer
    corecore