44 research outputs found
High genetic differentiation between an African and a non-African strain of Drosophila simulans revealed by segregation distortion and reduced crossover frequency
Abstract Drosophila simulans strains originating from Madagascar and nearby islands in the Indian Ocean often differ from those elsewhere in the number of sex comb teeth and the degree of morphological anomaly in hybrids with D. melanogaster. Here, we report a strong segregation distortion in the F1 intercross between two D. simulans strains originating from Madagascar and the US, possibly at both the gametic and zygotic levels. Strong bias against alleles of the Madagascar strain was observed for all ten marker loci distributed over the entire second chromosome in the F1 intercross, but only a few showed a weak distortion in the isogenic backgrounds of either strains. Significant deviations of genotype frequencies from Hardy-Weinberg proportions were consistently observed for the second chromosome. By contrast, the X and third chromosomes did not show any strong segregation distortion. Crossover frequency on the second chromosome was uniformly reduced in isogenic backgrounds whereas the map lengths in the F1 intercross were comparable to or larger than that of the standard D. melanogaster map. We discuss these findings in relation to previous studies on other traits and interspecific differences between D. mauritiana, which is endemic to Mauritius Island, and D. simulans
A Fast Control Plane for a Large-Scale and High-Speed Optical Circuit Switch System
We experimentally verify a fast control plane with 100 microseconds of
configuration time that can support more than 1000 racks, leveraged by a
software-defined network controller and an industrial real-time Ethernet
standard EtherCAT.Comment: 5 pages, 4 figure
Effects of small Hsp genes on developmental stability and microenvironmental canalization
Background:
Progression of development has to be insulated from the damaging impacts of environmental and genetic perturbations to produce highly predictable phenotypes. Molecular chaperones, such as the heat shock proteins (HSPs), are known to buffer various environmental stresses, and are deeply involved in protein homeostasis. These characteristics of HSPs imply that they might affect developmental buffering and canalization.
Results:
We examined the role of nine Hsp genes using the GAL4/UAS-RNAi system on phenotypic variation of various morphological traits in Drosophila melanogaster. The stability of bristle number, wing size and wing shape was characterized through fluctuating asymmetry (FA) and the coefficient of variation (CV), or among-individual variation. Progeny of the GAL4/Hsp-RNAi crosses tended to have reduced trait means for both wing size and wing shape. Transcriptional knockdown of Hsp67Bc and Hsp22 significantly increased FA of bristle number, while knockdown of Hsp67Ba significantly increased FA and among-individual variation of wing shape but only in males. Suppression of Hsp67Bb expression significantly increased among-individual variation of bristle number. The knockdown of gene expression was confirmed for Hsp67Ba, Hsp67Bc, Hsp22, and Hsp67Bb. Correlation between FA and CV or among-individual variation of each trait is weak and not significant except for the case of male wing shape.
Conclusion:
Four small Hsp genes (Hsp22, Hsp67Ba, Hsp67Bb and Hsp67Bc) showed involvement in the processes of morphogenesis and developmental stability. Due to possible different functions in terms of developmental buffering of these small Hsps, phenotypic stability of an organism is probably maintained by multiple mechanisms triggered by different environmental and genetic stresses on different traits. This novel finding may lead to a better understanding of non-Hsp90 molecular mechanisms controlling variability in morphological traits
Cuticular Hydrocarbon Content that Affects Male Mate Preference of Drosophila melanogaster from West Africa
Intraspecific variation in mating signals and preferences can be a potential source of incipient speciation. Variable crossability between Drosophila melanogaster and D. simulans among different strains suggested the abundance of such variations. A particular focus on one combination of D. melanogaster strains, TW1(G23) and Mel6(G59), that showed different crossabilities to D. simulans, revealed that the mating between females from the former and males from the latter occurs at low frequency. The cuticular hydrocarbon transfer experiment indicated that cuticular hydrocarbons of TW1 females have an inhibitory effect on courtship by Mel6 males. A candidate component, a C25 diene, was inferred from the gas chromatography analyses. The intensity of male refusal of TW1 females was variable among different strains of D. melanogaster, which suggested the presence of variation in sensitivity to different chemicals on the cuticle. Such variation could be a potential factor for the establishment of premating isolation under some conditions
De novo NSF mutations cause early infantile epileptic encephalopathy
N‐ethylmaleimide‐sensitive factor (NSF) plays a critical role in intracellular vesicle transport, which is essential for neurotransmitter release. Herein, we, for the first time, document human monogenic disease phenotype of de novo pathogenic variants in NSF, that is, epileptic encephalopathy of early infantile onset. When expressed in the developing eye of Drosophila, the mutant NSF severely affected eye development, while the wild‐type allele had no detectable effect under the same conditions. Our findings suggest that the two pathogenic variants exert a dominant negative effect. De novo heterozygous mutations in the NSF gene cause early infantile epileptic encephalopathy
Environmental Stress-Dependent Effects of Deletions Encompassing Hsp70Ba on Canalization and Quantitative Trait Asymmetry in Drosophila melanogaster
Hsp70 genes may influence the expression of wing abnormalities in Drosophila melanogaster but their effects on variability in quantitative characters and developmental instability are unclear. In this study, we focused on one of the six Hsp70 genes, Hsp70Ba, and investigated its effects on within-and among-individual variability in orbital bristle number, sternopleural bristle number, wing size and wing shape under different environmental conditions. To do this, we studied a newly constructed deletion, Df(3R)ED5579, which encompasses Hsp70Ba and nine non-Hsp genes, in the heterozygous condition and another, Hsp70Ba304, which deletes only Hsp70Ba, in the homozygous condition. We found no significant effect of both deletions on within-individual variation quantified by fluctuating asymmetry (FA) of morphological traits. On the other hand, the Hsp70Ba304/Hsp70Ba304 genotype significantly increased among-individual variation quantified by coefficient of variation (CV) of bristle number and wing size in female, while the Df(3R)ED5579 heterozygote showed no significant effect. The expression level of Hsp70Ba in the deletion heterozygote was 6 to 20 times higher than in control homozygotes, suggesting that the overexpression of Hsp70Ba did not influence developmental stability or canalization significantly. These findings suggest that the absence of expression of Hsp70Ba increases CV of some morphological traits and that HSP70Ba may buffer against environmental perturbations on some quantitative traits
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
DOCK2 is involved in the host genetics and biology of severe COVID-19
「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target