1,683 research outputs found

    An integral formula for L^2-eigenfunctions of a fourth order Bessel-type differential operator

    Full text link
    We find an explicit integral formula for the eigenfunctions of a fourth order differential operator against the kernel involving two Bessel functions. Our formula establishes the relation between K-types in two different realizations of the minimal representation of the indefinite orthogonal group, namely the L^2-model and the conformal model

    Transitions among crystal, glass, and liquid in a binary mixture with changing particle size ratio and temperature

    Full text link
    Using molecular dynamics simulation we examine changeovers among crystal, glass, and liquid at high density in a two dimensional binary mixture. We change the ratio between the diameters of the two components and the temperature. The transitions from crystal to glass or liquid occur with proliferation of defects. We visualize the defects in terms of a disorder variable "D_j(t)" representing a deviation from the hexagonal order for particle j. The defect structures are heterogeneous and are particularly extended in polycrystal states. They look similar at the crystal-glass crossover and at the melting. Taking the average of "D_j(t)" over the particles, we define a disorder parameter "D(t)", which conveniently measures the degree of overall disorder. Its relaxation after quenching becomes slow at low temperature in the presence of size dispersity. Its steady state average is small in crystal and large in glass and liquid.Comment: 7 pages, 10 figure

    Structure of Dark Matter Halos From Hierarchical Clustering

    Full text link
    We investigate the structure of the dark matter halo formed in the cold dark matter scenario using NN-body simulations. We simulated 12 halos with the mass of 6.6×1011M6.6\times 10^{11}M_{\odot} to 8.0×1014M8.0\times 10^{14}M_{\odot}. In almost all runs, the halos have density cusps proportional to r1.5r^{-1.5} developed at the center, which is consistent with the results of recent high-resolution calculations. The density structure evolves in a self-similar way, and is universal in the sense that it is independent of the halo mass and initial random realization of density fluctuation. The density profile is in good agreement with the profile proposed by Moore et al. (1999), which has central slope proportional to r1.5r^{-1.5} and outer slope proportional to r3r^{-3}. The halo grows through repeated accretion of diffuse smaller halos. We argue that the cusp is understood as a convergence slope for the accretion of tidally disrupted matter.Comment: 34 including 23 figures, revised version, accepted for publication in Ap

    Molecular Dynamics Simulation of Heat-Conducting Near-Critical Fluids

    Full text link
    Using molecular dynamics simulations, we study supercritical fluids near the gas-liquid critical point under heat flow in two dimensions. We calculate the steady-state temperature and density profiles. The resultant thermal conductivity exhibits critical singularity in agreement with the mode-coupling theory in two dimensions. We also calculate distributions of the momentum and heat fluxes at fixed density. They indicate that liquid-like (entropy-poor) clusters move toward the warmer boundary and gas-like (entropy-rich) regions move toward the cooler boundary in a temperature gradient. This counterflow results in critical enhancement of the thermal conductivity

    An inertial range length scale in structure functions

    Full text link
    It is shown using experimental and numerical data that within the traditional inertial subrange defined by where the third order structure function is linear that the higher order structure function scaling exponents for longitudinal and transverse structure functions converge only over larger scales, r>rSr>r_S, where rSr_S has scaling intermediate between η\eta and λ\lambda as a function of RλR_\lambda. Below these scales, scaling exponents cannot be determined for any of the structure functions without resorting to procedures such as extended self-similarity (ESS). With ESS, different longitudinal and transverse higher order exponents are obtained that are consistent with earlier results. The relationship of these statistics to derivative and pressure statistics, to turbulent structures and to length scales is discussed.Comment: 25 pages, 9 figure

    Effective colloidal processing for densification before SPS

    Get PDF
    In conventional dry processing, fine particles tend to agglomerate spontaneously due to Van der Waals attractive forces. Since the agglomeration of particles forms large residual pores in green bodies, elevated temperatures are necessary for densification. Colloidal processing is a very effective technique for controlling the pore size distribution in green compacts before sintering. The green compacts having small residual pores with a narrow size distribution is expected to enhance the densification at low sintering temperature during SPS. We already reported that colloidal processing for controlling the packing structure in green compact is effective for densification in SPS in the case of SiC. A commercially available SiC (6H) powder with the average particle size of 0.55 mm was used as the starting materials. When using the dry processing for consolidation, the density of the sample sintered by SPS in a vacuum atmosphere at 1950°C was 92% of the theoretical value. Aqueous suspensions with dispersed particles were prepared by adjusting pH and consolidated by slip casting to prepare the dense green compacts. The relative density of SiC prepared by SPS was increased with increasing temperature and reached more than 97% at 1950°C as shown in Fig. 1. In this presentation, this processing was applied to fabrication of transparent alumina. Commercially available Al2O3 powder with the average particle size of 0.4 mm was used as the starting materials. Suspensions with 30 vol% solid were consolidated by slip casting. The green compacts before sintering were further densified by cold isostatic pressing at 392 MPa for 10 min and calcined at 500°C for 1 h in air in order to burn off the dispersant. Final sintering was carried out at 1150°C under a uniaxial pressure of 100 MPa using an SPS. After rapid heating to 600°C, the temperature was raised from 600°C to 1150°C using a heating rate of 5°C/min. After holding samples at the sintering temperature for 10 min and then subsequently annealing them at 1000°C for 10 min, we obtained a sintered disk with a diameter of 25 mm and a thickness of 2 mm. Fig. 2(a) shows the photograph of the sample from the green compact prepared by slip casting, Fig2(b) is the sample densified by SPS from the as-received powder directly. The transparency of the sample prepared by slip casting is clearer than that of the sample by SPS from the as-received powder directly. Please click Additional Files below to see the full abstract

    X-ray tomographic analysis of the initial structure of the royal chamber and the nest-founding behavior of the drywood termite Incisitermes minor

    Get PDF
    The nesting biology of the drywood termite, Incisitermes minor, is poorly understood. To date, no published data are available regarding the in situ nest-gallery development of I. minor. Three naturally infested Sitka spruce (Picea sitchensis Bong. Carriere) timbers were analyzed by X-ray computer tomography to observe the structure of the first royal chamber and the termite’s nest-founding behavior. One timber was infested by a group of termites which emerged from their natal nest. The other two timbers were infested by dealate reproductives from the nuptial flight. The study revealed that the drywood termite engages in outside foraging activity and has great foraging flexibility. Computer tomographic images also revealed that I. minor reproductives showed anatomical selectivity in their nest-founding activity. The structure of the initial royal chambers varied to follow the anatomical texture of the timbers, which resembled either a European pear shape or a cashew nut shape

    Disability Prevention Programs for Older People: Factors Associated with Medical and Nursing Care Costs

    Get PDF
    This study aimed to clarify factors associated with medical and nursing care costs for older people living in community and to suggest an effective disability prevention programs. Total of participants in this study was 83 individuals (29 men and 54 women; mean age 81.2 ± 6.3 years old) on November 1st – December 28th, 2014. This study compared the average medical and nursing care costs per month with national average for those aged ≥ 65 years old. Logistic regression test was conducted to examine its association with medical and nursing care costs. Those who had outing activities ≥ 3 times a week were approximately three times less likely to reduce medical and nursing care costs than those who had outing activities < 3 times a week despite three controlled covariates (OR = 3.23 and 95% CI = 1.03 – 10.42). Disability prevention programs that improve frequency of outing at least three times in a week may become a valid economic approach to older people who do not live in nursing home
    corecore