15 research outputs found

    Engineering research and development of magnetically levitated high-temperature superconducting coil system for mini-RT project

    Get PDF
    A magnetically levitated superconducting coil system is being developed using high temperature superconductors for examining a new magnetic confinement of high-beta plasmas. A miniature double-pancake coil was fabricated with a Bi-2223 Ag-sheathed tape for the purpose of developing a floating control using laser displacement gauges. The coil was inductively excited with liquid nitrogen cooling and successfully levitated in the air. A persistent current switch is also being developed with a Bi-2223 Ag-0.3wt%Mn-sheathed tape, and a prototype model was successfully tested

    Stable long-term operation of superconducting current-feeder system for the LHD

    Get PDF
    A superconducting (SC) current-feeder system is used as the current transmission lines for the experimental fusion device, LRD. It consists of nine flexible SC bus lines with total length of 497 m, and nine pairs of gas-cooled current leads. To avoid the propagation of the ice on the leads, the temperature of the terminals had been kept in the range between 5 and 20 degrees C by the heaters. The measured voltage drops of all leads were less than 20 mV. The liquid helium levels of the leads and the sub-cooler tank will equalize by the siphon method. The total time of the coil excitations exceeds 3000 hours. We have demonstrated successfully that the SC current-feeder system was stable and easy to handle, and is useful for the SC experimental fusion device

    Stability and safety estimates and tests of a superconducting bus-line for large-scale superconducting coils

    Get PDF
    We have been developing a flexible superconducting bus-line as a unit electrical feeder between large-scale superconducting coils and their power supplies away from the coils. The designed superconducting bus-line consists of a pair of +/- aluminum stabilized NbTi/Cu compacted strand cables and a coaxial four-channel transfer line. A full-scale model of the SC bus-line (20 m long) has been constructed and tested successfully up to 40 kA without a quench under the short-circuit condition. Stability tests were also done by inducing a forced quench with heaters. A minimum propagation current larger than 32.5 kA was confirmed. Thus, the bus-line was cryogenically stabilized at the rated current of 30 kA. We have examined the test results and evaluated the stability and safety margins of this bus-line. The design criteria for a superconducting bus-line are also shown for large-scale superconducting coils with operating current as a parameter

    Development and tests of a flexible superconducting bus-line for the Large Helical Device

    Get PDF
    A flexible superconducting bus-line is proposed as an electrical feeder between the superconducting coils of the Large Helical Device (LHD) and the device\u27s power supplies. The bus-line consists of superconducting cables and a cryogenic flexible transfer-line. A specially developed aluminum stabilized NbTi/Cu compacted strand cable satisfies requirements for large current capacity, high stability, high reliability and flexibility. A full-scale model with a length of 20 m was designed and constructed to investigate the feasibility and performance of the superconducting bus-line. Its fabrication, transportation, installation, cooling and excitation tests were successfully carried out. The bus-line was very stable and could be excited up to 40 kA (rated current is 30 kA) without a quench. The stability, current distribution and heat load were also measure

    Engineering Design of the Mini-RT Device

    No full text
    "The plasma experiment apparatus S-RT (Superconducting Ring Trap) is planned for the purpose of high beta plasma confinement research in the University of Tokyo. As a preceding step, Mini-RT, which is the size reduction version of S-RT, has been constructed as a joint research of NIFS, the University of Tokyo, and Kyushu University. In this experiment a magnetic-levitation coil (floating coil) operated in persistent current mode has to levitate for 8 hours in the plasma vacuum vessel. The HTS floating coil wound with a Bi-2223 tape has a diameter of 300 mm and an electromotive force of 50 kA. Since any refrigerant cannot be fed to the coil during the plasma experiment, the coil is designed so that the temperature rise after 8 hours of levitation is less than 40 K with the specific heat of the coil and radiation shield. At the end of the daily plasma experiment, the coil will be drawn down to the maintenance location at the bottom of the plasma vacuum vessel, and it will be re-cooled to 20 K.
    corecore