140 research outputs found

    Effect of the Combination of Whole-Body Neuromuscular Electrical Stimulation and Voluntary Exercise on Metabolic Responses in Human

    Get PDF
    PurposeSince neuromuscular electrical stimulation (NMES) can recruit high-threshold motor units and enhance glucose metabolism, the combination of NMES and voluntary low-intensity exercise would induce both anerobic and aerobic energy consumptions and this type of exercise could be more efficient and effective than conventional exercise regimens. We aimed to investigate metabolic responses and muscle fatigue during whole body NMES (WB-NMES), voluntary exercise, and their combination.MethodsThe blood lactate concentration and maximal voluntary contraction were measured before and after specified exercises: WB-NMES (E), voluntary exercise (V), and their combination (VE), and expired gas was sampled during the exercises in thirteen healthy young men. Each exercise was conducted for 15 min and interval between exercise was > 48h.ResultsEnergy expenditure and V˙O2 relative to the body mass during VE were significantly higher than during V and E (p < 0.05). The Respiratory gas exchange ratio (RER) during both E and VE was higher than during V (p < 0.05), and the blood lactate concentration after VE was significantly higher than after V and E (p < 0.05). Although V˙O2 relative to the body mass was 18.6 ± 3.1 ml/min/kg and the metabolic equivalent was 5.31 ± 0.89 Mets, the blood lactate concentration reached 7.5 ± 2.7 mmol/L after VE.ConclusionThese results suggest that the combination of WB-NMES and voluntary exercise can enhance the metabolic response to a level equivalent to high intensity exercise under the net physiological burden of low-middle intensity exercises

    Comparable response of ccn1 with ccn2 genes upon arthritis: An in vitro evaluation with a human chondrocytic cell line stimulated by a set of cytokines

    Get PDF
    Background: The chondrosarcoma-derived HCS-2/8 has been known to be an excellent model of human articular chondrocytes. By mimicking the arthritic conditions through the treatment of HCS-2/8 cells with cytokines, we estimated the gene expression response of ccn1 and ccn2 during the course of joint inflammation in vitro. Results: In order to mimic the initiation of inflammation, HCS-2/8 cells were treated with tumor necrosis factor (TNF)-α. To induce pro-inflammatory or reparative responses, TGF-β was employed. Effects of an anti-inflammatory glucocorticoid were also evaluated. After stimulation, expression levels of ccn1 and ccn2 were quantitatively analyzed. Surprisingly, not only ccn2, but also ccn1 expression was repressed upon TNF-α stimulation, whereas both mRNAs were uniformly induced by transforming growth factor (TGF)-β and a glucocorticoid. Conclusion: These results describing the same response during the course of inflammation suggest similar and co-operative roles of these 2 ccn family members in the course of arthritis.</p

    Altered autonomic nervous system activity as a potential etiological factor of premenstrual syndrome and premenstrual dysphoric disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Premenstrual syndrome (PMS) encompasses a wide variety of cyclic and recurrent physical, emotional, and behavioral symptoms occurring during the late luteal phase of the menstrual cycle and abating shortly following the beginning of menses. Although PMS is widely recognized, its etiopathogenesis is not yet understood. The present study investigates whether the activity of the autonomic nervous system, which plays a vital role in orchestrating physiological homeostasis within the human body, is altered during the menstrual cycle of women with different degrees of premenstrual symptomatology.</p> <p>Methods</p> <p>Sixty-two women in their 20s to 40s with regular menstrual cycles participated in this study. All subjects were examined during the follicular and late luteal phases. Cycle phase was determined by the onset of menstruation and oral temperature and was verified by concentrations of ovarian hormones, estrone, and pregnanediol in a urine sample taken early in the morning. Autonomic nervous system activity was assessed by means of heart-rate variability (HRV) power spectral analysis during supine rest. The Menstrual Distress Questionnaire was used to evaluate physical, emotional, and behavioral symptoms accompanying the menstrual cycle of the subjects. The subjects were categorized in three groups, Control, PMS, and premenstrual dysphoric disorder (PMDD) groups, depending on the severity of premenstrual symptomatology.</p> <p>Results</p> <p>No intramenstrual cycle difference in any of the parameters of HRV was found in the Control group, which had no or a small increase in premenstrual symptoms. In contrast, Total power and high frequency power, which reflect overall autonomic and parasympathetic nerve activity, respectively, significantly decreased in the late luteal phase from the follicular phase in the PMS group. As for the PMDD group, which had more severe symptoms premenstrually, heart-rate fluctuation as well as all components of the power spectrum of HRV were markedly decreased regardless of the menstrual cycle compared to those of the other two groups.</p> <p>Conclusion</p> <p>Several theories have been proposed to explain the underlying mechanisms of PMS with its complex web of bio-psycho-social factors. Although causes and consequences continue to elude, the present study provides intriguing and novel findings that the altered functioning of the autonomic nervous system in the late luteal phase could be associated with diverse psychosomatic and behavioral symptoms appearing premenstrually. In addition, when symptoms become more severe (as seen in women with PMDD), the sympathovagal function might be more depressed regardless of the menstrual cycle.</p

    Novel insights into bi-articular muscle actions gained from high-density EMG

    Get PDF
    Biarticular muscles have traditionally been considered to exhibit homogeneous neuromuscular activation. The regional activation of biarticular muscles, as revealed from high-density surface electromyograms, seems however to discredit this notion. We thus hypothesize the regional activation of biarticular muscles may contribute to different actions about the joints they span. We then discuss the mechanistic basis and methodological implications underpinning our hypothesis

    Lower Local Dynamic Stability and Invariable Orbital Stability in the Activation of Muscle Synergies in Response to Accelerated Walking Speeds

    Get PDF
    In order to achieve flexible and smooth walking, we must accomplish subtasks (e. g., loading response, forward propulsion or swing initiation) within a gait cycle. To evaluate subtasks within a gait cycle, the analysis of muscle synergies may be effective. In the case of walking, extracted sets of muscle synergies characterize muscle patterns that relate to the subtasks within a gait cycle. Although previous studies have reported that the muscle synergies of individuals with disorders reflect impairments, a way to investigate the instability in the activations of muscle synergies themselves has not been proposed. Thus, we investigated the local dynamic stability and orbital stability of activations of muscle synergies across various walking speeds using maximum Lyapunov exponents and maximum Floquet multipliers. We revealed that the local dynamic stability in the activations decreased with accelerated walking speeds. Contrary to the local dynamic stability, the orbital stability of the activations was almost constant across walking speeds. In addition, the increasing rates of maximum Lyapunov exponents were different among the muscle synergies. Therefore, the local dynamic stability in the activations might depend on the requirement of motor output related to the subtasks within a gait cycle. We concluded that the local dynamic stability in the activation of muscle synergies decrease as walking speed accelerates. On the other hand, the orbital stability is sustained across broad walking speeds

    ヒトの動きの神経科学(第1章)

    Get PDF
    原著:Charles T. Leonard 監訳:松村 道一、森谷 敏夫、小田 伸

    ヒトの動きの神経科学(序章~目次)

    Get PDF
    原著:Charles T. Leonard 監訳:松村 道一、森谷 敏夫、小田 伸
    corecore