27 research outputs found

    Effects of exciton-polariton on Mach-Zehnder interference devices

    Get PDF
    A new optoelectronic device based on excitonpolariton was studied. In particular a Mach-Zehnder interference device fabricated by using a GaAs quantum well was studied. We simulated the output characteristics of Mach-Zehnder interference device by using a Finite Difference Time Domain (FDTD) method. Then we compared them with the experimental results measured in a low-temperature. After that we obtained the numerical values of electro-optic effect coefficients. Those were as large as 105×10-11 m/V for 4.5 K, while 74×10-11 m/V for 77 K. Therefore this estimation is considerably large, showing 57 (4 K) and 41 (77 K) times larger than conventional KDP crystal. This effect is probably caused by the excitonpolariton effect. Furthermore, we performed a photocurrent experiment to understand the transmitted light phase change characteristics, causing such large electro-optics effect at a comparatively higher temperature. Temperature dependence of photocurrent showed that the absorption edge and exciton peak remained constant up to 77 K, and then shifted to lower energy as the temperature increased. This probably explains how the large electro-optic effect can be obtained at a comparatively high temperature, i.e., 77 K

    Early specification of ascidian larval motor neurons

    Get PDF
    AbstractIn the tadpole larvae of the ascidian Halocynthia roretzi, six motor neurons, Moto-A, -B, and -C (a pair of each), are localized proximal to the caudal neural tube and show distinct morphology and innervation patterns. To gain insights into early mechanisms underlying differentiation of individual motor neurons, we have isolated an ascidian homologue of Islet, a LIM type homeobox gene. Earliest expression of Islet was detected in a pair of bilateral blastomeres on the dorsal edge of the late gastrula. At the neurula stage, this expression began to disappear and more posterior cells started to express Islet. Compared to expression of a series of motor neuron genes, it was confirmed that early Islet-positive blastomeres are the common precursors of Moto-A and -B, and late Islet-positive cells in the posterior neural tube are the precursors of Moto-C. Overexpression of Islet induced ectopic expression of motor neuron markers, suggesting that Islet is capable of regulating motor neuron differentiation. Since early expression of Islet colocalizes with that of HrBMPb, the ascidian homologue of BMP2/4, we tested a role of BMP in specification of the motor neuron fate. Overexpression of HrBMPb led to expansion of Lim and Islet expression toward the central area of the neural plate, and microinjection of mRNA coding for a dominant-negative BMP receptor weakened the expression of these genes. Our results suggest that determination of the ascidian motor neuron fate takes place at late gastrula stage and local BMP signaling may play a role in this step

    Alteration of intestinal flora by the intake of enzymatic degradation products of adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) with improvement of skin condition

    Get PDF
    AbstractAdlay has been used as a traditional Chinese medicine and nutrient for its beneficial effects on bowel movements and skin care. This study examined the effect of enzymatic degradation product of adlay, “Super Hatomugi” (SPH) on human skin and the intestinal flora in a randomized, double-blind placebo-controlled study. The subjects were divided into three groups: 500mg SPH, 1000mg SPH, and placebo, taken daily for 4weeks. Hematological and skin condition examinations as well as an analysis of intestinal flora were performed 2weeks before and 10weeks after the start of the SPH intake. Skin condition was improved by SPH intake as revealed by a reduction in the number of nucleated epidermal cells. In addition, an increase in the fecal population of Bacteroidetes followed the SPH intake. These results show the possibility that SPH improves the skin condition and changes the proportions of intestinal flora

    Growth Characteristics of GaAs and InAs Nanowhiskers

    No full text

    Subcortically and Callosally Projecting Neurons are Distinct Neuronal Pools in the Motor Cortex of the Reeler Mouse

    Get PDF
    Subcortically projecting neurons and callosally projecting ones are distinct neuronal pools in the cerebral cortex of the rodents. However, cortical efferent neurons are known to project multiple targets transiently by plural collateral axons. These plural axons are eliminated during prenatal and postnatal development. In the cerebral cortex of the Reelin-deficient mouse, reeler, which is caused by mutation of the reelin gene, cortical efferent neurons are ectopically distributed. However, it is still unknown whether cortical efferent neurons in the reeler mouse lose surplus collateral axons or maintain them during developmental periods. If surplus collaterals of malpositioned cortical neurons are not eliminated, neurons projecting subcortically may project their axons to the contralateral hemisphere. To test this plausible hypothesis, we made double injections of two fluorescent dyes, Fast Blue and Diamidino yellow dihydrochloride into two of three regions, i.e., upper cervical cord, ventral lateral thalamic nucleus, and contralateral motor cortex of the normal and reeler mice, to label corticospinal, corticothalamic and callosal commissure neurons in the motor cortex, retrogradely. No double labeled neurons were identified in the motor cortex of the normal and reeler mice, although the distribution patterns of these cortical efferent neurons were completely different between normal and reeler mice. These findings strongly suggest that collateral elimination of cortical efferent neurons during developing periods are not affected in this mutant mouse

    Function of strawberry notch Family Genes in the Zebrafish Brain Development

    Get PDF
    We previously reported embryonic expression pattern of strawberry notch (sbno) family genes, suggesting involvement in brain development. However function of sbno genes in the vertebrate development has not been known yet. Utilizing zebrafish embryos, we experimentally examined function of sbno genes during brain development in this report. Knockdown experiments of sbno1 and sbno2a disrupted brain morphology, and delayed developmental alteration of gene expression. The earliest effect of loss of function of sbno genes on the zebrafish embryogenesis that we found here was downregulation of otx2 expression. Knockdown of sbno1 specifically affects regionalization along the anterior-posterior axis of the brain. These results suggest essential roles of sbno genes in vertebrate brain development

    Structural Requirements of Alkylglyceryl-l-Ascorbic Acid Derivatives for Melanogenesis Inhibitory Activity

    No full text
    l-Ascorbic acid has multifunctional benefits on skin aesthetics, including inhibition of melanin production, and is widely used in cosmetics. It, however, has low stability and poor skin penetration. We hypothesize that alkylglyceryl-l-ascorbic acid derivatives, highly stable vitamin C–alkylglycerol conjugates, would have similar anti-melanogenic activity with better stability and penetration. We test 28 alkylglyceryl-l-ascorbic acid derivatives (1–28) on theophylline-stimulated B16 melanoma 4A5 cells to determine if they inhibit melanogenesis and establish any structure–function relationships. Although not the most potent inhibitors, 3-O-(2,3-dihydroxypropyl)-2-O-hexyl-l-ascorbic acid (6, IC50 = 81.4 µM) and 2-O-(2,3-dihydroxypropyl)-3-O-hexyl-l-ascorbic acid (20, IC50 = 117 µM) are deemed the best candidate derivatives based on their inhibitory activities and low toxicities. These derivatives are also found to be more stable than l-ascorbic acid and to have favorable characteristics for skin penetration. The following structural requirements for inhibitory activity of alkylglyceryl-l-ascorbic acid derivatives are also determined: (i) alkylation of glyceryl-l-ascorbic acid is essential for inhibitory activity; (ii) the 3-O-alkyl-derivatives (2–14) exhibit stronger inhibitory activity than the corresponding 2-O-alkyl-derivatives (16–28); and (iii) derivatives with longer alkyl chains have stronger inhibitory activities. Mechanistically, our studies suggest that l-ascorbic acid derivatives exert their effects by suppressing the mRNA expression of tyrosinase and tyrosine-related protein-1
    corecore