27 research outputs found
Identification of Physiologically Active Substances as Novel Ligands for MRGPRD
Mas-related G-protein coupled receptor member D (MRGPRD) is a G protein-coupled receptor (GPCR) which belongs to the Mas-related GPCRs expressed in the dorsal root ganglia (DRG). In this study, we investigated two novel ligands in addition to beta-alanine: (1) beta-aminoisobutyric acid, a physiologically active substance, with which possible relation to tumors has been seen together with beta-alanine; (2) diethylstilbestrol, a synthetic estrogen hormone. In addition to the novel ligands, we found that transfection of MRGPRD leads fibroblast cells to form spheroids, which would be related to oncogenicity. To understand the MRGPRD novel character, oncogenicity, a large chemical library was screened in order to obtain MRGPRD antagonists to utilize in exploring the character. The antagonist in turn inhibited the spheroid proliferation that is dependent on MRGPRD signaling as well as MRGPRD signals activated by beta-alanine. The antagonist, a small-molecule compound we found in this study, is a potential anticancer agent
MRGD, a MAS-related G-protein Coupled Receptor, Promotes Tumorigenisis and Is Highly Expressed in Lung Cancer
To elucidate the function of MAS-related GPCR, member D (MRGD) in cancers, we investigated the in vitro and in vivo oncogenic function of MRGD using murine fibroblast cell line NIH3T3 in which MRGD is stably expressed. The expression pattern of MRGD in clinical samples was also analyzed. We found that overexpression of MRGD in NIH3T3 induced focus formation and multi-cellular spheroid formation, and promoted tumors in nude mice. In other words, overexpression of MRGD in NIH3T3 induced the loss of contact inhibition, anchorage-independent growth and in vivo tumorigenesis. Furthermore, it was found that the ligand of MRGD, beta-alanine, enhanced spheroid formation in MRGD-expressing NIH3T3 cells. From investigation of clinical cancer tissues, we found high expression of MRGD in several lung cancers by immunohistochemistry as well as real time PCR. Based on these results, MRGD could be involved in tumorigenesis and could also be a novel anticancer drug target
[Fam-] trastuzumab deruxtecan (DS-8201a)-induced antitumor immunity is facilitated by the anti–CTLA-4 antibody in a mouse model
[Fam-] trastuzumab deruxtecan (DS-8201a) is a HER2 (ERBB2)-targeting antibody-drug conjugate, composed of a HER2-targeting antibody and a topoisomerase I inhibitor, exatecan derivative, that has antitumor effects in preclinical xenograft models and clinical trials. Recently, [fam-] trastuzumab deruxtecan was reported to enhance antitumor immunity and was beneficial in combination with an anti–PD-1 antibody in a mouse model. In this study, the antitumor effect of [fam-] trastuzumab deruxtecan in combination with an anti–CTLA-4 antibody was evaluated. [Fam-] trastuzumab deruxtecan monotherapy had antitumor activity in an immunocompetent mouse model with EMT6 human HER2-expressing mouse breast cancer cells (EMT6-hHER2). [Fam-] trastuzumab deruxtecan in combination with the anti–CTLA-4 antibody induced more potent antitumor activity than that by monotherapy with either agent. The combination therapy increased tumor-infiltrating CD4+ and CD8+ T cells in vivo. Mechanistically, cured mice with treatment of [fam-] trastuzumab deruxtecan and an anti–CTLA-4 antibody completely rejected EMT6-mock cells similar to EMT6-hHER2 cells, and splenocytes from the cured mice responded to both EMT6-hHER2 and EMT6-mock cells as measured by interferon-gamma release. Taken together, these results indicate that antitumor immunity is induced by [fam-] trastuzumab deruxtecan and is facilitated in combination with anti–CTLA-4 antibody
A novel T cell-redirecting anti-GPRC5D × CD3 bispecific antibody with potent antitumor activity in multiple myeloma preclinical models
Abstract G-protein-coupled receptor class 5 member D (GPRC5D) is detected in malignant plasma cells in approximately 90% of patients diagnosed with multiple myeloma (MM). Here, we constructed BsAb5003, a novel humanized bispecific monoclonal antibody targeting CD3 and GPRC5D, and evaluated its therapeutic impact on MM. BsAb5003 induced specific cytotoxicity of GPRC5D-positive MM cells with concomitant T cell activation and cytokine release. The efficacy of BsAb5003 was associated with GPRC5D expression levels in MM cell lines. Flow cytometry analysis of bone marrow mononuclear cells (BMMNCs) from 49 MM patients revealed that GPRC5D was expressed in a wide population of MM patients, including heavily treated and high-risk patients. In ex vivo assays using BMMNCs, BsAb5003 induced potent efficacy against CD138 + MM cells in both newly diagnosed and relapsed/refractory patient samples in a GPRC5D expression-dependent manner. BsAb5003 significantly enhanced T cell activation and cytokine production in combination with immunomodulatory drugs (IMiDs) against MM cell lines. BsAb5003 also demonstrated significant inhibition of in vivo tumor growth by recruiting T cells. Taken together, these results suggest that T cell-redirecting bispecific antibody targeting GPRC5D as monotherapy and combination therapy with IMiDs could be a highly potent and effective treatment approach for a wide population of MM patients