31 research outputs found

    Iodine containing porous organosilica nanoparticles trigger tumor spheroids destruction upon monochromatic X-ray irradiation: DNA breaks and K-edge energy X-ray

    Get PDF
    アインシュタインの光電効果をがん細胞の中で再現 放射線治療への新展開. 京都大学プレスリリース. 2021-07-14.Quantum physics helps destroy cancer cells. 京都大学プレスリリース. 2021-07-14.X-ray irradiation of high Z elements causes photoelectric effects that include the release of Auger electrons that can induce localized DNA breaks. We have previously established a tumor spheroid-based assay that used gadolinium containing mesoporous silica nanoparticles and synchrotron-generated monochromatic X-rays. In this work, we focused on iodine and synthesized iodine-containing porous organosilica (IPO) nanoparticles. IPO were loaded onto tumor spheroids and the spheroids were irradiated with 33.2 keV monochromatic X-ray. After incubation in CO₂ incubator, destruction of tumor spheroids was observed which was accompanied by apoptosis induction, as determined by the TUNEL assay. By employing the γH2AX assay, we detected double strand DNA cleavages immediately after the irradiation. These results suggest that IPO first generate double strand DNA breaks upon X-ray irradiation followed by apoptosis induction of cancer cells. Use of three different monochromatic X-rays having energy levels of 33.0, 33.2 and 33.4 keV as well as X-rays with 0.1 keV energy intervals showed that the optimum effect of all three events (spheroid destruction, apoptosis induction and generation of double strand DNA breaks) occurred with a 33.2 keV monochromatic X-ray. These results uncover the preferential effect of K-edge energy X-ray for tumor spheroid destruction mediated by iodine containing nanoparticles

    Transcriptome Profiling of Lotus japonicus Roots During Arbuscular Mycorrhiza Development and Comparison with that of Nodulation

    Get PDF
    To better understand the molecular responses of plants to arbuscular mycorrhizal (AM) fungi, we analyzed the differential gene expression patterns of Lotus japonicus, a model legume, with the aid of a large-scale cDNA macroarray. Experiments were carried out considering the effects of contaminating microorganisms in the soil inoculants. When the colonization by AM fungi, i.e. Glomus mosseae and Gigaspora margarita, was well established, four cysteine protease genes were induced. In situ hybridization revealed that these cysteine protease genes were specifically expressed in arbuscule-containing inner cortical cells of AM roots. On the other hand, phenylpropanoid biosynthesis-related genes for phenylalanine ammonia-lyase (PAL), chalcone synthase, etc. were repressed in the later stage, although they were moderately up-regulated on the initial association with the AM fungus. Real-time RT–PCR experiments supported the array experiments. To further confirm the characteristic expression, a PAL promoter was fused with a reporter gene and introduced into L. japonicus, and then the transformants were grown with a commercial inoculum of G. mosseae. The reporter activity was augmented throughout the roots due to the presence of contaminating microorganisms in the inoculum. Interestingly, G. mosseae only colonized where the reporter activity was low. Comparison of the transcriptome profiles of AM roots and nitrogen-fixing root nodules formed with Mesorhizobium loti indicated that the PAL genes and other phenylpropanoid biosynthesis-related genes were similarly repressed in the two organs

    Beyond reduction cocatalysts: critical role of metal cocatalysts in photocatalytic oxidation of methane with water

    No full text
    Environmentally sustainable and selective conversion of methane to valuable chemicals under ambient conditions is pivotal for the development of next-generation photocatalytic technology. However, due to the lack of microscopic knowledge about non-thermal methane conversion, controlling and modulating photocatalytic oxidation processes driven by photogenerated holes remain a challenge. Here, we report novel function of metal cocatalysts to accept photogenerated holes and dominate the oxidation selectivity of methane, which is clearly beyond the conventional concept in photocatalysis that the metal cocatalysts loaded on the surfaces of semiconductor photocatalysts mostly capture photogenerated electrons and dominate reduction reactions exclusively. The novel photocatalytic role of metal cocatalysts was verified by operando molecular spectroscopy combined with real-time mass spectrometry for metal-loaded Ga2O3 model photocatalysts under methane gas and water vapor at ambient temperature and pressure. Our concept of metal cocatalysts that work as active sites for both photocatalytic oxidation and reduction provides a new understanding of photocatalysis and a solid basis for controlling the non-thermal redox reactions by metal-cocatalyst engineering

    Critical impacts of interfacial water on the photocatalytic C–H conversion of methane

    No full text
    On-site and on-demand photocatalytic methane conversion under mild conditions is one of the urgent global challenges for the sustainable use of ubiquitous methane resources. However, the lack of accurate knowledge of the reaction mechanism prevents the development of engineering strategies for methane photocatalysis. Combining real-time mass spectrometry and operando infrared absorption spectroscopy with ab initio molecular dynamics simulations, here we report key molecular-level insights into photocatalytic green utilization of methane. The photoactivated water dramatically promotes the activation of robust C–H bond of methane, and stabilizes the •CH3 intermediates in the interfacial hydrogen-bond network of water. Owing to the moderate stabilization of •CH3, the overall photocatalytic conversion rates are dramatically improved by typically more than 30 times at ambient temperatures (~300 K) and pressures (~1 atm). The increase in reaction activity is noticeable also in C1 to C2 evolution of methane, although water is not explicitly involved in the reaction equation (2CH4 → C2H6 + H2). These marked water-assisted effects in the interfacial chemistry should affect the basic understanding and the designing strategies on the non-thermal heterogeneous catalysis of methane under ambient conditions

    Critical impacts of interfacial water on C–H activation in photocatalytic methane conversion

    No full text
    Photocatalytic methane conversion under ambient conditions holds immense promise for sustainable use of methane resources, but incomplete knowledge of reaction mechanisms hampers the development of engineering strategies for methane photocatalysis. Here, combining real-time mass spectrometry and operando infrared absorption spectroscopy with ab initio molecular dynamics simulations, the authors explore the role of interfacial water in C–H activation during the photocatalytic conversion of methane
    corecore