72 research outputs found

    Ala/Ser Racemase From P. horikoshii

    Get PDF
    We recently identified and characterized a novel broad substrate specificity amino acid racemase (BAR) from the hyperthermophilic archaeon Pyrococcus horikoshii OT-3. Three genes, PH0782, PH1423, and PH1501, encoding homologs exhibiting about 45% sequence identity with BAR were present in the P. horikoshii genome. In this study, we detected pyridoxal 5'-phosphate (PLP)-dependent amino acid racemase activity in the protein encoded by PH0782. The enzyme showed activity toward Ala, Ser, Thr, and Val, but the catalytic efficiency with Thr or Val was much lower than with Ala or Ser. The enzyme was therefore designated Ala/Ser racemase (ASR). Like BAR, ASR was highly stable at high temperatures and over a wide range of pHs, though its hexameric structure differed from the dimeric structure of BAR. No activity was detected in K291A or D234A ASR mutants. This suggests that, as in Ile 2-epimerase (ILEP) from Lactobacillus buchneri JCM1115, these residues are involved in Schiff base formation and substrate interaction, respectively. Unlike BAR, enhanced ASR activity was not detected in P. horikoshii cells cultivated in the presence of D-Ala or D-Ser. This is the first description of a PLP-dependent fold type I ASR in archaea

    Highly stable meso-diaminopimelate dehydrogenase from an Ureibacillus thermosphaericus strain A1 isolated from a Japanese compost: purification, characterization and sequencing

    Get PDF
    We screened various thermophiles for meso-diaminopimelate dehydrogenase (meso-DAPDH, EC 1.4.1.16), which catalyzes the NAD(P)-dependent oxidative deamination of meso-diaminopimelate, and found the enzyme in a thermophilic bacterium isolated from compost in Japan. The bacterium grew well aerobically at around 55°C and was identified as Ureibacillus thermosphaericus strain A1. We purified the enzyme about 47-fold to homogeneity from crude cell extract using five successive purification steps. The molecular mass of the purified protein was about 80 kDa, and the molecule consists of a homodimer with the subunit molecular mass of about 40 kDa. The optimum pH and temperature for the catalytic activity of the enzyme are about 10.5 and 65°C, respectively. The enzyme is highly selective for meso-diaminopimelate as the electron donor, and NADP but not NAD can serve as the electron acceptor. The Km values for meso-diaminopimelate and NADP at 50°C and pH 10.5 are 1.6 mM and 0.13 mM, respectively. The nucleotide sequence of this meso-DAPDH gene encodes a 326-amino acid peptide. When the gene was cloned and overexpressed in Escherichia coli Rosetta (DE3), the specific activity in the crude extract of the recombinant cells was about 18.0-fold higher than in the extract from U. thermosphaericus strain A1. This made more rapid and simpler purification of the enzyme possible

    Artificial Thermostable D-Amino Acid Dehydrogenase : Creation and Application

    Get PDF
    Many kinds of NAD(P)+-dependent L-amino acid dehydrogenases have been so far found and effectively used for synthesis of L-amino acids and their analogs, and for their sensing. By contrast, similar biotechnological use of D-amino acid dehydrogenase (D-AADH) has not been achieved because useful D-AADH has not been found from natural resources. Recently, using protein engineering methods, an NADP+-dependent D-AADH was created from meso-diaminopimelate dehydrogenase (meso-DAPDH). The artificially created D-AADH catalyzed the reversible NADP+-dependent oxidative deamination of D-amino acids to 2-oxo acids. The enzyme, especially thermostable one from thermophiles, was efficiently applicable to synthesis of D-branched-chain amino acids (D-BCAAs), with high yields and optical purity, and was useful for the practical synthesis of 13C- and/or 15N-labeled D-BCAAs. The enzyme also made it possible to assay D-isoleucine selectively in a mixture of isoleucine isomers. Analyses of the three-dimensional structures of meso-DAPDH and D-AADH, and designed mutations based on the information obtained made it possible to markedly enhance enzyme activity and to create D-AADH homologs with desired reactivity profiles. The methods described here may be an effective approach to artificial creation of biotechnologically useful enzymes

    Distribution of D-amino acids in vinegars and involvement of lactic acid bacteria in the production of D-amino acids

    Get PDF
    Levels of free D-amino acids were compared in 11 vinegars produced from different sources or through different manufacturing processes. To analyze the D- and L-amino acids, the enantiomers were initially converted into diastereomers using pre-column derivatization with o-phthaldialdehyde plus N-acethyl-L-cysteine or N-tert-butyloxycarbonyl-L-cysteine. This was followed by separation of the resultant fluorescent isoindol derivatives on an octadecylsilyl stationary phase using ultra-performance liquid chromatography. The analyses showed that the total D-amino acid level in lactic fermented tomato vinegar was very high. Furthermore, analysis of the amino acids in tomato juice samples collected after alcoholic, lactic and acetic fermentation during the production of lactic fermented tomato vinegar showed clearly that lactic fermentation is responsible for the D-amino acids production; marked increases in D-amino acids were seen during lactic fermentation, but not during alcoholic or acetic fermentation. This suggests lactic acid bacteria have a greater ability to produce D-amino acids than yeast or acetic acid bacteria

    First characterization of archaeal amino acid racemase

    Get PDF
    A novel amino acid racemase with broad substrate specificity was recently isolated from the hyperthermophilic archaeon Pyrococcus horikoshii OT-3. Characterization of this enzyme has been difficult, however, because the recombinant enzyme is produced mainly as an inclusion body in Escherichia coli. In this study, expression of the recombinant protein into the soluble fraction was markedly improved by co-expression with chaperone molecules. The purified enzyme retained its full activity after incubation at 80°C for at least 2 h in buffer (pH 7-10), making this enzyme the most thermostable amino acid racemase so far known. Besides the nine amino acids containing hydrophobic and aromatic amino acids previously reported (Kawakami et al., Amino acids, 47, 1579-1587, 2015), the enzyme exhibited substantial activity toward Thr (about 42% of relative activity toward Phe) and showed no activity toward Arg, His, Gln, and Asn. The substrate specificity of this enzyme thus differs markedly from those of other known amino acid racemases. In particular, the high reaction rate with Trp and Tyr, in addition to Leu, Met and Phe as substrates is a noteworthy feature of this enzyme. The high reactivity toward Trp and Tyr, as well as extremely high thermostability, is likely a major advantage of using BAR for biochemical conversion of these aromatic amino acids

    Artificial Thermostable D-Amino Acid Dehydrogenase: Creation and Application

    Get PDF
    Many kinds of NAD(P)+-dependent L-amino acid dehydrogenases have been so far found and effectively used for synthesis of L-amino acids and their analogs, and for their sensing. By contrast, similar biotechnological use of D-amino acid dehydrogenase (D-AADH) has not been achieved because useful D-AADH has not been found from natural resources. Recently, using protein engineering methods, an NADP+-dependent D-AADH was created from meso-diaminopimelate dehydrogenase (meso-DAPDH). The artificially created D-AADH catalyzed the reversible NADP+-dependent oxidative deamination of D-amino acids to 2-oxo acids. The enzyme, especially thermostable one from thermophiles, was efficiently applicable to synthesis of D-branched-chain amino acids (D-BCAAs), with high yields and optical purity, and was useful for the practical synthesis of 13C- and/or 15N-labeled D-BCAAs. The enzyme also made it possible to assay D-isoleucine selectively in a mixture of isoleucine isomers. Analyses of the three-dimensional structures of meso-DAPDH and D-AADH, and designed mutations based on the information obtained made it possible to markedly enhance enzyme activity and to create D-AADH homologs with desired reactivity profiles. The methods described here may be an effective approach to artificial creation of biotechnologically useful enzymes

    チョウコウネツキン コウソ オ ソシ ト スル バイオ センサー ノ カイハツ : ポリアミン カンレン コウソ ノ キノウ カイセキ ト D-プロリン ダツスイソ コウソ キノウ デンキョク センサー ノ カイハツ

    Get PDF
    An amperometric enzyme sensor give us higher sensitivity and specificity for the substrate determination. In spite of advantages of enzyme sensor, many enzymes so far found have been too labile to use as biosensor elements in artificial circumstances for a longer period. Hyperthermophiles, which can grow above 90℃, have been known to produce much more stable enzymes under various artificial conditions. In this work, we carried out screening, biochemical characterization and improvement of production for hyperthermostable enzymes which are more useful as the elements in the biosensors. We focused on the polyamines as one of the substrates of biosensors. Polyamines have been known to play many important roles in cell proliferation, differentiation and transformation. The concentration of the polyamines together with their acetyl conjugates remarkably increases in the biological fluids and the affected tissues of cancer patients. Therefore, their polyamines are listed as tumor markers. Gas and ion chromatographies have been so far used for polyamine determination, but have some problems from the aspects of high sensitivity and easy operation. Thus, we here developed biosensors using hyperthermostable enzymes for polyamine determination. Such enzyme sensors are more useful for the simple and rapid determination of polyamines and application for clinical analysis and food analysis In addition, we tried the construction of biosensor using the hyperthermophilic enzyme, D-Proline dehydrogenase. As the results, we found the thermostable agmatinase and spermidine dehydrogenase in hyperthermophiles, Pyrococcus horikoshii and Sulfolobus tokodaii, respectively. We succeeded the construction of novel amperometric sensor for D-proline determination using D-Proline dehydrogenase derived from Pyrobaculum islandicum

    Oral Administration of D-aspartate, but not of L-aspartate, Reduces Food Intake in Chicks

    Get PDF
    In the present study, we determined the effects of oral administration of L- and D-aspartate (L-Asp and D-Asp) on food intake over a period of2haftertheadministration, as well as its effects on the concentration of L- and D-Asp in the brain and plasma. Chicks were orally administered different levels (0, 3.75, 7.5 and 15 mmol/kg body weight) of L-Asp (Experiment 1) and D-Asp (Experiment 2). Administration of several doses of L-Asp linearly increased the concentration of L-Asp, but not of D-Asp, in plasma. Oral L-Asp somewhat modified the levels of L- and D-Asp levels in the telencephalon, but not in the diencephalon. However, food intake was not significantly changed with doses of L-Asp. On the other hand, D-Asp strongly and dose-dependently inhibited food intake over a period of 2 h after the administration. Oral D-Asp clearly increased D-Asp levels in the plasma and diencephalon, but no significant changes in L-Asp were detected. Brain monoamine contents were only minimally influenced by L- or DAsp administration. We conclude that D-Asp may act as an anorexigenic factor in the diencephalon. Key words: brain, D-Aspartate, food intake, L-Aspartate, neonatal chick, plasm

    First characterization of extremely halophilic 2-deoxy-D-ribose-5-phosphate aldolase

    Get PDF
    2-Deoxy-D-ribose-5-phosphate aldolase (DERA) catalyzes the aldol reaction between two aldehydes and is thought to be a potential biocatalyst for the production of a variety of stereo-specific materials. A gene encoding DERA from the extreme halophilic archaeon, Haloarcula japonica, was overexpressed in Escherichia coli. The gene product was successfully purified, using procedures based on the protein’s halophilicity, and characterized. The expressed enzyme was stable in a buffer containing 2 M NaCl and exhibited high thermostability, retaining more than 90% of its activity after heating at 70℃ for 10 min. The enzyme was also tolerant to high concentrations of organic solvents, such as acetonitrile and dimethylsulfoxide. Moreover, H. japonica DERA was highly resistant to a high concentration of acetaldehyde and retained about 35% of its initial activity after 5-hours’ exposure to 300 mM acetaldehyde at 25℃, the conditions under which E. coli DERA is completely inactivated. The enzyme exhibited much higher activity at 25℃ than the previously characterized hyperthermophilic DERAs (Sakuraba et al., 2007). Our results suggest that the extremely halophilic DERA has high potential to serve as a biocatalyst in organic syntheses. This is the first description of the biochemical characterization of a halophilic DERA
    corecore