115 research outputs found

    Hydrogen-enhanced creep deformation of SUY-1 pure iron

    Get PDF
    Please click Additional Files below to see the full abstract

    Ultra-grain Refinement Effect on Tensile and Phase Transformation Behaviour in a Metastable Austenitic Steel Charged in Hydrogen Gas

    Get PDF
    AbstractTo ensure the safety of hydrogen systems, materials must be selected according to strength levels and susceptibility to hydrogen. Austenitic steels are notoriously resistant to hydrogen embrittlement, but usually suffer from relatively low strength levels.In this study, the material used is Fe-16Cr-10Ni, a metastable stainless steel. A slab was cold-rolled to 1.5mm thickness and annealed to produce two different austenite grain sizes (1μm, ultra-fine grain, and 50μm, coarse grain). The plate material was charged in hydrogen gas (10MPa, 270°C, 72hours) and the mechanical properties were evaluated by tensile testing in air.Thermal desorption spectrometry was used to confirm that there is no significant difference in hydrogen content between the two materials and that therefore grain boundaries do not play a significant role in trapping hydrogen. Tensile testing showed that the strength was increased by grain refining but that the increase in strength did not enhance the material's susceptibility to hydrogen embrittlement. Ductility, evaluated by elongation and reduction of area, decreased in both ultra-fine-grained material and coarse- grained material. Cold-rolling coupled with saturated magnetization measurements of BCC phase content showed little difference in phase transformation for hydrogen-charged and uncharged material

    The Shock State of Itokawa Sample

    Get PDF
    One of the fundamental aspects of any astromaterial is its shock history, since this factor elucidates critical historical events, and also because shock metamorphism can alter primary mineralogical and petrographic features, and reset chronologies [1]. Failure to take shock history into proper account during characterization can result in seriously incorrect conclusions being drawn. Thus the Hayabusa Preliminary Examination Team (HASPET) made shock stage determination of the Itokawa samples a primary goal [2]. However, we faced several difficulties in this particular research. The shock state of ordinary chondrite materials is generally determined by simple optical petrographic observation of standard thin sections. The Itokawa samples available to the analysis team were mounted into plastic blocks, were polished on only one side, and were of non-standard and greatly varying thickness, all of which significantly complicated petrographic analysis but did not prevent it. We made an additional estimation of the sample shock state by a new technique for this analysis - electron back-scattered diffraction (EBSD) in addition to standard petrographic techniques. We are also investigating the crystallinity of Itokawa olivine by Synchrotron X-ray diffraction (SXRD)

    Effect of Partial Solution Treatment on Martensitic Transformation of 12%Cr Steels

    No full text
    corecore