32 research outputs found

    Structural effects of phosphate groups on apatite formation in a copolymer modified with Ca2+ in a simulated body fluid

    Get PDF
    Organic–inorganic composites are novel bone substitutes that can ameliorate the mismatch of Young\u27s moduli between natural bone and implanted ceramics. Phosphate groups contribute to the formation of apatite in a simulated body fluid (SBF) and the adhesion of osteoblast-like cells. Therefore, modification of a polymer with these functional groups is expected to enhance the ability of the organic–inorganic composite to bond with bone. Two phosphate groups have been used, phosphonic acid (–C–PO3H2) and phosphoric acid (–O–PO3H2). However, the effects of structural differences between these phosphate groups have not been clarified. In this study, the apatite formation of copolymers modified with Ca2+ and either –C–PO3H2 or –O–PO3H2 was examined. The mechanism of apatite formation is discussed based on analytical and computational approaches. The copolymers containing –O–PO3H2, but not those containing –C–PO3H2, formed apatite in the SBF, although both released similar amounts of Ca2+ into the SBF. Adsorption of HPO42− from –O–PO3H2 in the SBF following Ca2+ adsorption was confirmed by zeta-potential measurement and X-ray photoelectron spectroscopy. The measurement of the complex formation constant revealed that the –O–PO32−⋯Ca2+ complex was thermodynamically unstable enough to convert into CaHPO4, which was not the case with –C–PO32−⋯Ca2+. The formation of CaHPO4-based clusters was found to be a key factor for apatite nucleation. In conclusion, this study revealed that modification with –O–PO3H2 was more effective for enhancing apatite formation compared with –C–PO3H2

    Lineage-specific positive selection at the merozoite surface protein 1 (msp1) locus of Plasmodium vivax and related simian malaria parasites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The 200 kDa merozoite surface protein 1 (MSP-1) of malaria parasites, a strong vaccine candidate, plays a key role during erythrocyte invasion and is a target of host protective immune response. <it>Plasmodium vivax</it>, the most widespread human malaria parasite, is closely related to parasites that infect Asian Old World monkeys, and has been considered to have become a parasite of man by host switch from a macaque malaria parasite. Several Asian monkey parasites have a range of natural hosts. The same parasite species shows different disease manifestations among host species. This suggests that host immune responses to <it>P. vivax</it>-related malaria parasites greatly differ among host species (albeit other factors). It is thus tempting to invoke that a major immune target parasite protein such as MSP-1 underwent unique evolution, depending on parasite species that exhibit difference in host range and host specificity.</p> <p>Results</p> <p>We performed comparative phylogenetic and population genetic analyses of the gene encoding MSP-1 (<it>msp1</it>) from <it>P. vivax </it>and nine <it>P. vivax</it>-related simian malaria parasites. The inferred phylogenetic tree of <it>msp1 </it>significantly differed from that of the mitochondrial genome, with a striking displacement of <it>P. vivax </it>from a position close to <it>P. cynomolgi </it>in the mitochondrial genome tree to an outlier of Asian monkey parasites. Importantly, positive selection was inferred for two ancestral branches, one leading to <it>P. inui </it>and <it>P. hylobati </it>and the other leading to <it>P. vivax</it>, <it>P. fieldi </it>and <it>P. cynomolgi</it>. This ancestral positive selection was estimated to have occurred three to six million years ago, coinciding with the period of radiation of Asian macaques. Comparisons of <it>msp1 </it>polymorphisms between <it>P. vivax</it>, <it>P. inui </it>and <it>P. cynomolgi </it>revealed that while some positively selected amino acid sites or regions are shared by these parasites, amino acid changes greatly differ, suggesting that diversifying selection is acting species-specifically on <it>msp1</it>.</p> <p>Conclusions</p> <p>The present results indicate that the <it>msp1 </it>locus of <it>P. vivax </it>and related parasite species has lineage-specific unique evolutionary history with positive selection. <it>P. vivax </it>and related simian malaria parasites offer an interesting system toward understanding host species-dependent adaptive evolution of immune-target surface antigen genes such as <it>msp1</it>.</p

    Clinical Guides for aHUS

    Get PDF
    Atypical hemolytic uremic syndrome (aHUS) is a rare disease characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. In 2013, we developed diagnostic criteria to enable early diagnosis and timely initiation of appropriate treatment for aHUS. Recent clinical and molecular findings have resulted in several proposed classifications and definitions of thrombotic microangiopathy and aHUS. Based on recent advances in this field and the emerging international consensus to exclude secondary TMAs from the definition of aHUS, we have redefined aHUS and proposed diagnostic algorithms, differential diagnosis, and therapeutic strategies for aHUS

    The Oscillating Potential Model of Visually Induced Vection

    Get PDF
    2017, The Author(s) 2017. Visually induced illusions of self-motion are often referred to as vection. This article developed and tested a model of responding to visually induced vection. We first constructed a mathematical model based on well-documented characteristics of vection and human behavioral responses to this illusion. We then conducted 10,000 virtual trial simulations using this Oscillating Potential Vection Model (OPVM). OPVM was used to generate simulated vection onset, duration, and magnitude responses for each of these trials. Finally, we compared the properties of OPVM\u27s simulated vection responses with real responses obtained in seven different laboratory-based vection experiments. The OPVM output was found to compare favorably with the empirically obtained vection data

    Synchrotron µ-XRF mapping analysis of trace elements in in-situ cultured Japanese red coral, Corallium japonicum

    No full text
    Precious corals belong to the family Coralliidae (Cnidaria, Octocorallia), and their axis, which consists of high magnesian calcium carbonate, has long been used in jewelry. With its low growth rate and long lifespan, precious coral is a representative taxon of the vulnerable marine ecosystem. Due to years of overfishing, coral fishery has become a controversial issue. To estimate the growth rate and clarify the uptake process of trace elements in relation to the growth of the carbonate axis, Japanese red coral (Corallium japonicum) was cultured at a depth of 135 m off Takeshima Island, Kagoshima, Japan for 98 months and analyzed by microscopic X-ray fluorescence/soft X-ray photoabsorption (µ-XRF/XAS) speciation mapping. The growth rate was estimated to be 0.37 mm/year in diameter, and 10–11 growth rings were observed in a cross section of the axis. This estimated growth-rate value is the first ever to be obtained from the in-situ culture of Japanese precious coral. The fluctuation in water temperature near the in-situ-culture site was recorded for part of the culture period and then compared with the changes in the growth ring and the distribution of trace elements in a cross section of the coral axis during the same period. When the water temperature was increasing, the growth ring was light in color, sulfur and phosphorus concentrations were low, and magnesium was high. Conversely, a dark band in the growth ring, high sulfur and phosphorus, and low magnesium concentrations were observed when the water temperature was decreasing. In a cross section of the coral axis, the distribution of sulfur and magnesium from the center to the surface corresponded, respectively, to dark and light bands in the annual growth ring. Sulfur concentration was high in the dark band and low in the light band, while magnesium was negatively correlated with sulfur
    corecore