5 research outputs found

    Inhibition of B16 melanoma growth and metastasis in C57BL mice by vaccination with a syngeneic endothelial cell line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Key role of angiogenesis in tumor growth and metastasis based on accumulating evidence and recent progress of immunotherapy have led us to investigate vaccine therapy targeting tumor angiogenesis.</p> <p>Methods</p> <p>C57BL/6J mice were vaccinated with a syngeneic endothelial cell line Tpit/E by subcutaneous injection once a week. Prior to ninth vaccination, the mice were challenged with B16/F10 melanoma cells by subcutaneous inoculation on the back for the tumor growth model or by tail venous injection for the lung metastasis model. Development of subcutaneous tumor and lung metastasis was monitored by computed tomography scanning, which enabled accurate evaluation with the minimized sacrifice of mice.</p> <p>Results</p> <p>Vaccination with Tpit/E cells inhibited subcutaneous tumor growth and appearance of lung metastasis compared to control. Survival period was elongated in the Tpit/E vaccination in both of the two models. We also obtained hybridomas secreting specific antibodies to Tpit/E cells from a mouse vaccinated with the cells, indicating that specific immune response to the syngeneic endothelial cells was elicited.</p> <p>Conclusion</p> <p>These results suggest that vaccination with an autologous endothelial cell line may be effective against melanoma.</p

    Interaction between gustatory depolarizing receptor potential and efferent-induced slow depolarizing synaptic potential in frog taste cell.

    Get PDF
    Electrical stimulation of parasympathetic nerve (PSN) efferent fibers in the glossopharyngeal nerve induced a slow depolarizing synaptic potential (DSP) in frog taste cells under hypoxia. The objective of this study is to examine the interaction between a gustatory depolarizing receptor potential (GDRP) and a slow DSP. The amplitude of slow DSP added to a tastant-induced GDRP of 10 mV was suppressed to 60% of control slow DSPs for NaCl and acetic acid stimulations, but to 20-30% for quinine-HCl (Q-HCl) and sucrose stimulations. On the other hand, when a GDRP was induced during a prolonged slow DSP, the amplitude of GDRPs induced by 1 M NaCl and 1 M sucrose was suppressed to 50% of controls, but that by 1 mM acetic acid and 10 mM Q-HCl unchanged. It is concluded that the interaction between GDRPs and efferent-induced slow DSPs in frog taste cells under hypoxia derives from the crosstalk between a gustatory receptor current across the receptive membrane and a slow depolarizing synaptic current across the proximal subsynaptic membrane of taste cells

    Effect of gap junction blocker beta-glycyrrhetinic acid on taste disk cells in frog.

    Get PDF
    A gap junction blocker, 18beta-glycyrrhetinic acid (beta-GA), increased the membrane resistance of Ia, Ib and II/III cells of frog taste disk by 50, 160, and 300 M Omega, respectively, by blocking the gap junction channels and hemichannels. The amplitudes of gustatory depolarizing potentials in the disk cells for 4 basic taste stimuli were reduced to 40-60% after intravenous injection of beta-GA at 1.0 mg/kg. beta-GA of 1.0 mg/kg did not affect the resting potentials and the reversal potentials for tastant-induced depolarizing potentials in any taste disk cells. The percentage of cells responding to each of 4 basic taste stimuli and varying numbers of 4 taste qualities did not differ between control and beta-GA-treated taste disk cells. This implies that gustatory depolarizing response profiles for 4 basic taste stimuli were very similar in control and beta-GA-treated taste disk cells. It is concluded that beta-GA at 1.0 mg/kg reduced the amplitude of gustatory depolarizing potentials in taste disk cells by strongly blocking depolarizing currents flowing through the gap junction channels and hemichannels, but probably weakly affected the gustatory transduction mechanisms for 4 taste stimuli
    corecore