4 research outputs found

    Kinetic and equilibrium studies of urea adsorption onto activated carbon: Adsorption mechanism

    No full text
    <p>We found that activated carbon effectively removed urea from solution and that urea adsorption onto activated carbon followed a pseudo-second-order kinetic model. We classified the urea adsorption on activated carbon as physical adsorption and found that it was best described by the Halsey adsorption isotherm, suggesting that the multilayer adsorption of urea molecules on the adsorption sites of activated carbon best characterized the adsorption system. The mechanism of adsorption of urea by activated carbon involved two steps. First, an amino (–NH<sub>2</sub>) group of urea interacted with a carbonyl (–C˭O) group and a hydroxyl (−OH) group on the surface of activated carbon via dipole–dipole interactions. Next, the –C˭O group of the urea molecule adsorbed to the activated carbon interacted with another –NH<sub>2</sub> group from a second urea molecule, leading to multilayer adsorption.</p> <p>Schematic representation of the adsorption of urea on activated carbon.</p

    Simultaneous Recovery of Benzene-Rich Oil and Metals by Steam Pyrolysis of Metal-Poly(ethylene terephthalate) Composite Waste

    No full text
    The possibility of simultaneous recovery of benzene and metals from the hydrolysis of poly­(ethylene terephthalate) (PET)-based materials such as X-ray films, magnetic tape, and prepaid cards under a steam atmosphere at a temperature of 450 °C was evaluated. The hydrolysis resulted in metal-containing carbonaceous residue and volatile terephthalic acid (TPA). The effects of metals and additives on the recovery process were also investigated. All metals were quantitatively recovered, and silver, maghemite (γ-Fe<sub>2</sub>O<sub>3</sub>), and anatase (TiO<sub>2</sub>) were recovered without any changes in their crystal structures or compositions. In a second step, TPA was decarboxylized in the presence of calcium oxide (CaO) at 700 °C, producing benzene with an average yield of 34% and purity of 76%. Maghemite (γ-Fe<sub>2</sub>O<sub>3</sub>) incorporated in magnetic tape and prepaid cards could decarboxylate TPA. Aluminum present in the prepaid cards produced hydrogen by the reaction with steam. However, the presence of metals had no adverse influence on the recovery of benzene-rich oil in the presence of CaO. Therefore, this method can be applied to PET-based materials containing inorganic substances, which cannot be recycled effectively otherwise

    Steam Pyrolysis of Polyimides: Effects of Steam on Raw Material Recovery

    No full text
    Aromatic polyimides (PIs) have excellent thermal stability, which makes them difficult to recycle, and an effective way to recycle PIs has not yet been established. In this work, steam pyrolysis of the aromatic PI Kapton was performed to investigate the recovery of useful raw materials. Steam pyrolysis significantly enhanced the gasification of Kapton at 900 °C, resulting in 1963.1 mL g<sup>–1</sup> of a H<sub>2</sub> and CO rich gas. Simultaneously, highly porous activated carbon with a high BET surface area was recovered. Steam pyrolysis increased the presence of polar functional groups on the carbon surface. Thus, it was concluded that steam pyrolysis shows great promise as a recycling technique for the recovery of useful synthetic gases and activated carbon from PIs without the need for catalysts and organic solvents

    Recent Advancements in Pyrolysis of Halogen-Containing Plastics for Resource Recovery and Halogen Upcycling: A State-of-the-Art Review

    No full text
    Plastic waste has emerged as a serious issue due to its impact on environmental degradation and resource scarcity. Plastic recycling, especially of halogen-containing plastics, presents challenges due to potential secondary pollution and lower-value implementations. Chemical recycling via pyrolysis is the most versatile and robust approach for combating plastic waste. In this Review, we present recent advancements in halogen-plastic pyrolysis for resource utilization and the potential pathways from “reducing to recycling to upcycling” halogens. We emphasize the advanced management of halogen-plastics through copyrolysis with solid wastes (waste polymers, biomass, coal, etc.), which is an efficient method for dealing with mixed wastes to obtain high-value products while reducing undesirable substances. Innovations in catalyst design and reaction configurations for catalytic pyrolysis are comprehensively evaluated. In particular, a tandem catalysis system is a promising route for halogen removal and selective conversion of targeted products. Furthermore, we propose novel insights regarding the utilization and upcycling of halogens from halogen-plastics. This includes the preparation of halogen-based sorbents for elemental mercury removal, the halogenation–vaporization process for metal recovery, and the development of halogen-doped functional materials for new materials and energy applications. The reutilization of halogens facilitates the upcycling of halogen-plastics, but many efforts are needed for mutually beneficial outcomes. Overall, future investigations in the development of copyrolysis and catalyst-driven technologies for upcycling halogen-plastics are highlighted
    corecore