439 research outputs found
Time-dependent and Non-BPS Solutions in N=6 Superconformal Chern-Simons Theory
We study a class of classical solutions of three-dimensional N=6
superconformal Chern-Simons theory coupled with U(N) \times U(N) bi-fundamental
matter fields. Especially, time evolutions of fuzzy spheres are discussed for
both massless and massive cases. For the massive case, there are a variety of
solutions having different behaviors according to the value of the mass. In
addition to the time-dependent solutions, we analyze non-BPS static solutions
which represent parallel M5/M5 or M5/anti-M5-branes suspended by multiple
M2-branes. These solutions are similar to the fundamental strings connecting
two parallel (anti) Dp-branes in perturbative string theory. A moving M5-brane
and domain wall solutions with constant velocity that are obtained by the
Lorentz boost of the known BPS solutions are briefly addressed.Comment: 27 pages, 9 figures, published version in JHE
Berry's Phase for Standing Wave Near Graphene Edge
Standing waves near the zigzag and armchair edges, and their Berry's phases
are investigated. It is suggested that the Berry's phase for the standing wave
near the zigzag edge is trivial, while that near the armchair edge is
non-trivial. A non-trivial Berry's phase implies the presence of a singularity
in parameter space. We have confirmed that the Dirac singularity is absent
(present) in the parameter space for the standing wave near the zigzag
(armchair) edge. The absence of the Dirac singularity has a direct consequence
in the local density of states near the zigzag edge. The transport properties
of graphene nanoribbons observed by recent numerical simulations and
experiments are discussed from the point of view of the Berry's phases for the
standing waves.Comment: 6 pages, 4 figure
Soliton Trap in Strained Graphene Nanoribbons
The wavefunction of a massless fermion consists of two chiralities,
left-handed and right-handed, which are eigenstates of the chiral operator. The
theory of weak interactions of elementally particle physics is not symmetric
about the two chiralities, and such a symmetry breaking theory is referred to
as a chiral gauge theory. The chiral gauge theory can be applied to the
massless Dirac particles of graphene. In this paper we show within the
framework of the chiral gauge theory for graphene that a topological soliton
exists near the boundary of a graphene nanoribbon in the presence of a strain.
This soliton is a zero-energy state connecting two chiralities and is an
elementally excitation transporting a pseudospin. The soliton should be
observable by means of a scanning tunneling microscopy experiment.Comment: 7 pages, 4 figure
Temporal and Spatial Cellular Distribution of Neural Crest Derivatives and Alpha Cells during Islet Development
Recent studies have revealed that signals from neural crest (NC) derivatives regulate the mass, proliferation, and maturation of beta cells in developing fetal pancreas. However, little is known about the cellular distribution of NC derivatives during pancreatic development or the process whereby the developing islets are enclosed. We studied the temporal and spatial distribution of NC derivatives and endocrine cells at each developmental stage. At embryonic day 10.5 (E10.5) of mouse embryo, NC derivatives that migrated to the prospective pancreatic region were distributed in close proximity to pancreatic epithelial cells. As development advanced, most NC derivatives progressively surrounded endocrine rather than exocrine cells, and were distributed in closer proximity to alpha cells rather than to beta cells. At E20, approximately 70% of the NC derivatives enclosing endocrine cells were distributed in close proximity to alpha cells. Moreover, the expression of SynCAM, a Ca2+-independent homophilic trans-cell adhesion molecule, was confirmed from E16.5 on and was more remarkable at the cell boundaries of alpha cells and NC derivatives. These findings suggest that NC derivatives might be distributed in close proximity to alpha cells as a result of homophilic binding of SynCAM expressed by alpha cells and NC derivatives during islet development
- …