2,046 research outputs found

    Response to. comment on optic nerve sheath diameter ultrasound evaluation in intensive care unit: possible role and clinical aspects in neurological critical patients' daily monitoring

    Get PDF
    Comment on "Optic Nerve Sheath Diameter Ultrasound Evaluation in Intensive Care Unit: Possible Role and Clinical Aspects in Neurological Critical Patients' Daily Monitoring"

    Promoting post-stroke recovery through focal or whole body vibration: criticisms and prospects from a narrative review

    Get PDF
    Objective: Several focal muscle vibration (fMV) and whole body vibration (WBV) protocols have been designed to promote brain reorganization processes in patients with stroke. However, whether fMV and WBV should be considered helpful tools to promote post-stroke recovery remains still largely unclear. Methods: We here achieve a comprehensive review of the application of fMV and WBV to promote brain reorganization processes in patients with stroke. By first discussing the putative physiological basis of fMV and WBV and then examining previous observations achieved in recent randomized controlled trials (RCT) in patients with stroke, we critically discuss possible strength and limitations of the currently available data. Results: We provide the first systematic assessment of fMV studies demonstrating some improvement in upper and lower limb functions, in patients with chronic stroke. We also confirm and expand previous considerations about the rather limited rationale for the application of current WBV protocols in patients with chronic stroke. Conclusion: Based on available information, we propose new recommendations for optimal stimulation parameters and strategies for recruitment of specific stroke populations that would more likely benefit from future fMV or WBV application, in terms of speed and amount of post-stroke functional recovery

    Treatment responses to antiangiogenetic therapy and chemotherapy in nonsecreting paraganglioma (PGL4) of urinary bladder with SDHB mutation: a case report

    Get PDF
    Paraganglioma (PGL) is a rare neuroendocrine tumor. Currently, the malignancy is defined as the presence of metastatic spread at presentation or during follow-up. Several gene mutations are listed in the pathogenesis of PGL, among which succinate dehydrogenase (SDHX), particularly the SDHB isoform, is the main gene involved in malignancy. A 55-year-old male without evidence of catecholamine secretion had surgery for PGL of the urinary bladder. After 1 year, he showed a relapse of disease and demonstrated malignant PGL without evidence of catecholamine secretion with a germline heterozygous mutation of succinate dehydrogenase B (SDHB). After failure of a second surgery for relapse, he started medical treatment with sunitinib daily but discontinued due to serious side effects. Cyclophosphamide, vincristine, and dacarbazine (CVD) chemotherapeutic regimen stopped the disease progression for 7 months. Conclusion: Malignant PGL is a very rare tumor, and SDHB mutations must be always considered in molecular diagnosis because they represent a critical event in the progression of the oncological disease. Currently, there are few therapeutic protocols, and it is often difficult, as this case demonstrates, to decide on a treatment option according to a reasoned set of choices. Abbreviations: CVD = cyclophosphamide, vincristine and dacarbazine, HIF-1a = hypoxia inducible factor 1 alpha, PGL = paraganglioma, SDH = succinate dehydrogenase, VEGF = vasoendothelial growth factor

    Short-term effects of focal muscle vibration on motor recovery after acute stroke: a pilot randomized sham-controlled study

    Get PDF
    Repetitive focal muscle vibration (rMV) is known to promote neural plasticity and long-lasting motor recovery in chronic stroke patients. Those structural and functional changes within the motor network underlying motor recovery occur in the very first hours after stroke. Nonetheless, to our knowledge, no rMV-based studies have been carried out in acute stroke patients so far, and the clinical benefit of rMV in this phase of stroke is yet to be determined. The aim of this randomized double-blind sham-controlled study is to investigate the short-term effect of rMV on motor recovery in acute stroke patients. Out of 22 acute stroke patients, 10 were treated with the rMV (vibration group–VG), while 12 underwent the sham treatment (control group–CG). Both treatments were carried out for 3 consecutive days, starting within 72 h of stroke onset; each daily session consisted of three 10-min treatments (for each treated limb), interspersed with a 1-min interval. rMV was delivered using a specific device (Cro®System, NEMOCO srl, Italy). The transducer was applied perpendicular to the target muscle's belly, near its distal tendon insertion, generating a 0.2–0.5 mm peak-to-peak sinusoidal displacement at a frequency of 100 Hz. All participants also underwent a daily standard rehabilitation program. The study protocol underwent local ethics committee approval (ClinicalTrial.gov NCT03697525) and written informed consent was obtained from all of the participants. With regard to the different pre-treatment clinical statuses, VG patients showed significant clinical improvement with respect to CG-treated patients among the NIHSS (p < 0.001), Fugl-Meyer (p = 0.001), and Motricity Index (p < 0.001) scores. In addition, when the upper and lower limb scales scores were compared between the two groups, VG patients were found to have a better clinical improvement at all the clinical end points. This study provides the first evidence that rMV is able to improve the motor outcome in a cohort of acute stroke patients, regardless of the pretreatment clinical status. Being a safe and well-tolerated intervention, which is easy to perform at the bedside, rMV may represent a valid complementary non-pharmacological therapy to promote motor recovery in acute stroke patients

    Narrative Review of the Complex Interaction between Pain and Trauma in Children: A Focus on Biological Memory, Preclinical Data, and Epigenetic Processes

    Get PDF
    The incidence and collective impact of early adverse experiences, trauma, and pain continue to increase. This underscores the urgent need for translational efforts between clinical and preclinical research to better understand the underlying mechanisms and develop effective therapeutic approaches. As our understanding of these issues improves from studies in children and adolescents, we can create more precise preclinical models and ultimately translate our findings back to clinical practice. A multidisciplinary approach is essential for addressing the complex and wide-ranging effects of these experiences on individuals and society. This narrative review aims to (1) define pain and trauma experiences in childhood and adolescents, (2) discuss the relationship between pain and trauma, (3) consider the role of biological memory, (4) decipher the relationship between pain and trauma using preclinical data, and (5) examine the role of the environment by introducing the importance of epigenetic processes. The ultimate scope is to better understand the wide-ranging effects of trauma, abuse, and chronic pain on children and adolescents, how they occur, and how to prevent or mitigate their effects and develop effective treatment strategies that address both the underlying causes and the associated physiological and psychological effects

    Can tongue position and cervical ROM affect postural oscillations? A pilot and preliminary study

    Get PDF
    The tongue is considered an important part of the postural system, so it is fundamental to understand how it can interfere with the humans’ postural oscillations. The aim of this preliminary investigation is to understand the effects of different tongue position and cervical ROM on postural oscillations measured in a stabilometric test. Thirteen voluntary subjects were recruited (30.8 ± 9.7 yrs.; 173.6 ± 14.9 cm; 72.6 ± 15.6 kg) and tested in three different random tongue conditions: comfortable tongue position (CT), palatal spot position (ST) and low tongue position (LT). All tests were performed with open eyes. Stabilometric test were performed with a pressure platform. In addition, the cervical ROM was assessed in the CT condition to create a baseline measurement and to find out baseline relationship with cervical ROM and postural oscillations. Data analysis indicates no significant difference in CoP sway path length for CT / ST / LT (260.7 ± 106.5 mm / 236.9 ± 79.3 mm / 272.9 ± 89.3 mm, respectively). A moderate but significant correlation is present between postural oscillations and cervical rotation ROM (R = -0.59; p = .03), indicating that good postural oscillations are connected with a free ROM of the highest part of the body. The results of this preliminary investigation do not support the use of different tongue position during postural assessment to discriminate some postural interferences of the tongue. At the same time the results suggest the relationship between cervical ROM and stability. These results suggest the necessity to study more in deep this phenomenon with other specific class of subjects

    Differential gene expression patterns in cyclooxygenase-1 and cyclooxygenase-2 deficient mouse brain

    Get PDF
    BACKGROUND: Cyclooxygenase (COX)-1 and COX-2 produce prostanoids from arachidonic acid and are thought to have important yet distinct roles in normal brain function. Deletion of COX-1 or COX-2 results in profound differences both in brain levels of prostaglandin E(2 )and in activation of the transcription factor nuclear factor-κB, suggesting that COX-1 and COX-2 play distinct roles in brain arachidonic acid metabolism and regulation of gene expression. To further elucidate the role of COX isoforms in the regulation of the brain transcriptome, microarray analysis of gene expression in the cerebral cortex and hippocampus of mice deficient in COX-1 (COX-1(-/-)) or COX-2 (COX-2(-/-)) was performed. RESULTS: A majority (>93%) of the differentially expressed genes in both the cortex and hippocampus were altered in one COX isoform knockout mouse but not the other. The major gene function affected in all genotype comparisons was 'transcriptional regulation'. Distinct biologic and metabolic pathways that were altered in COX(-/- )mice included β oxidation, methionine metabolism, janus kinase signaling, and GABAergic neurotransmission. CONCLUSION: Our findings suggest that COX-1 and COX-2 differentially modulate brain gene expression. Because certain anti-inflammatory and analgesic treatments are based on inhibition of COX activity, the specific alterations observed in this study further our understanding of the relationship of COX-1 and COX-2 with signaling pathways in brain and of the therapeutic and toxicologic consequences of COX inhibition

    How do wave packets spread? Time evolution on Ehrenfest time scales

    Full text link
    We derive an extension of the standard time dependent WKB theory which can be applied to propagate coherent states and other strongly localised states for long times. It allows in particular to give a uniform description of the transformation from a localised coherent state to a delocalised Lagrangian state which takes place at the Ehrenfest time. The main new ingredient is a metaplectic operator which is used to modify the initial state in a way that standard time dependent WKB can then be applied for the propagation. We give a detailed analysis of the phase space geometry underlying this construction and use this to determine the range of validity of the new method. Several examples are used to illustrate and test the scheme and two applications are discussed: (i) For scattering of a wave packet on a barrier near the critical energy we can derive uniform approximations for the transition from reflection to transmission. (ii) A wave packet propagated along a hyperbolic trajectory becomes a Lagrangian state associated with the unstable manifold at the Ehrenfest time, this is illustrated with the kicked harmonic oscillator.Comment: 30 pages, 3 figure

    Gauge invariance and radiative corrections in an extra dimensional theory

    Full text link
    The gauge structure of the four dimensional effective theory originated in a pure five dimensional Yang-Mills theory compactified on the orbifold S1/Z2S^1/Z_2, is discussed on the basis of the BRST symmetry. If gauge parameters propagate in the bulk, the excited Kaluza-Klein (KK) modes are gauge fields and the four dimensional theory is gauge invariant only if the compactification is carried out by using curvatures as fundamental objects. The four dimensional theory is governed by two types of gauge transformations, one determined by the KK zero modes of the gauge parameters and the other by the excited ones. Within this context, a gauge-fixing procedure to quantize the KK modes that is covariant under the first type of gauge transformations is shown and the ghost sector induced by the gauge-fixing functions is presented. If the gauge parameters are confined to the usual four dimensional space-time, the known result in the literature is reproduced with some minor variants, although it is emphasized that the excited KK modes are not gauge fields, but matter fields transforming under the adjoint representation of SU4(N)SU_4(N). A calculation of the one-loop contributions of the excited KK modes of the electroweak gauge group on the off-shell WWV, with V a photon or a Z boson, is exhibited. Such contributions are free of ultraviolet divergences and well-behaved at high energies.Comment: 7 pages, conference proceedings, a new reference was added, the title has been change
    • …
    corecore