524 research outputs found
MONTE CARLO SIMULATIONS OF MUON PRODUCTION
Muon production requirements for a muon collider are presented. Production of
muons from pion decay is studied. Lithium lenses and solenoids are considered
for focussing pions from a target, and for matching the pions into a decay
channel. Pion decay channels of alternating quadrupoles and long solenoids are
compared. Monte Carlo simulations are presented for production of by protons over a wide energy range, and criteria for
choosing the best proton energy are discussed.Comment: Latex uses mu95.sty, 19 pages, 5 postscript figures. A postscript
file can be seen at URL http://www.cap.bnl.gov/~cap/mumu/important.html
Search for Publication
Recent Progress of RF Cavity Study at Mucool Test Area
In order to develop an RF cavity that is applicable for a muon beam cooling
channel, a new facility, called Mucool Test Area (MTA) has been built at
Fermilab. MTA is a unique facility whose purpose is to test RF cavities in
various conditions. There are 201 and 805 MHz high power sources, a 4-Tesla
solenoid magnet, a cryogenic system including a Helium liquifier, an explosion
proof apparatus to operate gaseous/liquid Hydrogen, and a beam transport line
to send an intense H- beam from the Fermilab Linac accelerator to the MTA hall.
Recent activities at MTA will be discussed in this document.Comment: 4 pp. 13th International Workshop on Neutrino Factories, Superbeams
and Beta beams (NuFact11) 1-6 Aug 2011: Geneva, Switzerlan
MEMS-Based Terahertz Detectors
A MEMS based novel THz detector structure is designed and realized by micro fabrication. The detector is then characterized to extract its mechanical performance. Operating in 1-5 THz band, the detector has a pixel size of 200 μm × 200 μm. Bimaterial suspension legs consist of Parylene-C and titanium, the pair of which provides a high mismatch in coefficients of thermal expansion. The pixel is a suspended Parylene-C structure having a 200 nm-thick titanium metallization. Operation principle relies on conversion of absorbed THz radiation into heat energy on the pixel. This increases the temperature of the free-standing microstructure that is thermally isolated from the substrate. The increase in temperature induces mechanical deflection due to bimaterial springs. The detector is designed to deliver a noise equivalent temperature difference (NETD) less than 500 mK and a refresh rate of 30 Hz
Role of ZIP14 (SLC39A14) gene histidine rich regions in neural tube defects
Neural tube defects (NTDs) comprise a group of congenital malformations that includes spina bifida, anencephaly, meningomyelocele and encephalocele. Reports have implicated zinc deficiency as one of the causative factors of NTDs. Both environmental and genetic factors are involved in the etiology of NTDs. Inadequate folate intake and nutritional deficiency are important environmental risk factors. The aim of this study was to determine the relation of a zinc related gene ZRT and IRT like protein 14 (ZIP14) and neural tube defects in Turkish patients. The case control study included seventy Turkish mothers who gave birth to NTD infants. Two hundred and thirty-nine healthy controls were consecutively selected without any congenital defects or familial NTD history. Following DNA extraction, PCR, SSCP and DNA sequencing analysis of exons of the ZIP14 gene were performed. Our data revealed that no relation of neural tube defects and ZIP14 was detected in Turkish NTD patients. Zinc deficiency have been reported as a risk factor for Turkish population and other possible zinc related gene defects may have importance.Keywords: Neural tube defects (NTDs); Zinc; ZIP1
A Suspended Array of Square Patch Metamaterial Absorbers for Terahertz Applications
A suspended array of square metallic patches on a thin dielectric layer is introduced as a terahertz absorber. The absorber is fabricated on a metalized substrate and the device exhibits metamaterial behavior at specific frequencies determined by the size of the patches. It is feasible to place patches with different sizes in an array formation for a broadband absorber. Design of the absorber is described using electromagnetic simulations. The absorber structure was fabricated on a silicon wafer and its characteristics were measured using a terahertz time domain spectroscope. The measured data match well the simulations indicating strong absorption peaks in a band of 0.5-2 THz
Investigating femtosecond laser interaction with tellurite glass family
Focusing ultrafast laser pulses induce localized permanent structural modifications on the surface or in transparent materials, that are of particular interest for photonic applications. Among the materials of interest, the tellurite glass family is attractive for near-infrared and photonics applications due to its broad-transparency window and high optical nonlinearity. Here, we systematically investigate structural changes occurring in various TeO2-based glasses exposed to femtosecond laser with various laser parameters. Remarkably, in a regime where heat accumulated after successive pulses, we observed the formation of polarization-controlled self-organized patterns expanding well beyond the focal volume, suggesting the presence of an evanescent coupling mechanism enhancing the self-organization. In addition, our results, obtained with compositional elemental analysis coupled with Raman spectra suggest different ion migration mechanisms in the laser affected zone at the surface and inside the glass. The formation of crystalline tellurium (t-Te) from glass structural units due to photo-induced elemental dissociation was observed only at the surface. The formation of ultrathin layer of crystalline tellurium offers the possibility to explore structural transitions in two-dimensional (2D) glasses by observing changes in the short- and medium- range structural orders, induced by spatial confinement
Computer models of saliency alone fail to predict subjective visual attention to landmarks during observed navigation
This study aimed to understand whether or not computer models of saliency could explain landmark saliency. An online survey was conducted and participants were asked to watch videos from a spatial navigation video game (Sea Hero Quest). Participants were asked to pay attention to the environments within which the boat was moving and to rate the perceived saliency of each landmark. In addition, state-of-the-art computer saliency models were used to objectively quantify landmark saliency. No significant relationship was found between objective and subjective saliency measures. This indicates that during passive observation of an environment while being navigated, current automated models of saliency fail to predict subjective reports of visual attention to landmarks
A model of rf breakdown arcs
This paper presents a rst iteration of a model that attempts to describe all aspects of breakdown in rf cavities and provides some estimates of the parameters and parameter ranges involved, as an aid to producing more precise models and more useful experiments. The model describes how breakdown events can be triggered, how they grow, it identi es the power source for their rapid growth, mechanisms that limit their growth, how they are extinguished and how they can be mitigated. We also discuss applications to superconducting rf and high pressure gas structures. The model relies heavily on previous experiments with 805 and 201 MHz warm copper cavities, and pre-liminary plasma modeling using the code OOPIC Pro. We compare estimates from the model with experimental data where this is possible. Because of the geometrical dependence of all parameters, the wide range of experiments being performed, the wide range of experimental parameters in a given breakdown event and the lack of extensive systematic parameter searches at this stage in our studies, it is diffcult to present precise results. We are constrained to showing what mechanisms are involved, the strength of these mechanisms and how they interact to produce the experimental data. We are primarily interested in the development and dynamics of the arc, magnetic and gas effects and insights on how to avoid arcing in all environments
- …