17 research outputs found

    Essential role for proteinase-activated receptor-2 in arthritis

    Get PDF
    Using physiological, pharmacological, and gene disruption approaches, we demonstrate that proteinase-activated receptor-2 (PAR-2) plays a pivotal role in mediating chronic inflammation. Using an adjuvant monoarthritis model of chronic inflammation, joint swelling was substantially inhibited in PAR-2-deficient mice, being reduced by more than fourfold compared with wild-type mice, with virtually no histological evidence of joint damage. Mice heterozygous for PAR-2 gene disruption showed an intermediate phenotype. PAR-2 expression, normally limited to endothelial cells in small arterioles, was substantially upregulated 2 weeks after induction of inflammation, both in synovium and in other periarticular tissues. PAR-2 agonists showed potent proinflammatory effects as intra-articular injection of ASKH95, a novel synthetic PAR-2 agonist, induced prolonged joint swelling and synovial hyperemia. Given the absence of the chronic inflammatory response in the PAR-2-deficient mice, our findings demonstrate a key role for PAR-2 in mediating chronic inflammation, thereby identifying a novel and important therapeutic target for the management of chronic inflammatory diseases such as rheumatoid arthritis

    Regulation of stress-activated protein kinases (SAPKs) mediated by proteinase-activated receptor-2 (PAR-2)

    No full text
    Available from British Library Document Supply Centre- DSC:DXN056155 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    The role of the C-terminal tail in protease-activated receptor-2-mediated Ca2+ signalling, proline-rich tyrosine kinase-2 activation, and mitogen-activated protein kinase activity

    No full text
    C-terminal truncation mutants were made to investigate the role of the C-terminus in coupling proteinase-activated receptor-2 (PAR-2) to various signalling pathways. Membrane expression of the delta15, delta34, delta43, and delta34-43 mutants was similar; however, expression of deltatail was lost, as was agonist-mediated internalisation of deltatail, delta43, and delta34-43. Additionally, trypsin and SLIGKV-stimulated [3H]IP accumulation was abrogated in cells transiently expressing delta43 or delta34-43 truncations, but remained unaffected in cells expressing delta34 or delta15. PAR-2 agonist-stimulated intracellular Ca(2+) mobilisation and PYK-2 activity were also abolished by deltatail, delta43, and delta34-43 mutants. However, trypsin-stimulated stress-activated protein kinases (SAPKs) or extracellular signal-regulated kinase (ERK) activities were unaffected by the delta34-43 mutation, although activity was abrogated following delta43 or deltatail truncations, suggesting that Ca(2+) mobilisation, PYK-2, or receptor internalisation are not requied for activation of SAPKs or ERK. These studies identify a novel sequence within the PAR-2 C-terminus essential for InsP(3) generation and PYK-2 activity but not mitogen-activated protein kinase (MAPK) activation

    Binding of a highly potent protease-activated receptor-2 (PAR2) activating peptide, [(3)H]2-furoyl-LIGRL-NH(2), to human PAR2

    No full text
    1. To determine the binding characteristics of a highly potent agonist for protease-activated receptor-2 (PAR2), 2-furoyl-Leu-Ile-Gly-Arg-Leu-amide (2-furoyl-LIGRL-NH(2)), whole-cell binding assays were performed utilising a radioactive ligand, [(3)H]2-furoyl-LIGRL-NH(2). 2. Specific binding of [(3)H]2-furoyl-LIGRL-NH(2) was observed in NCTC2544 cells, dependent upon PAR2 expression, and competitively displaced by the addition of unlabeled PAR2 agonists. Scatchard analysis of specific saturation binding suggested a single binding site, with K(d) of 122±26.1 nM and a corresponding B(max) of 180±6 f mol in 3.0 × 10(5) cells. 3. The relative binding affinities of a series of modified PAR2 agonist peptides obtained from competition studies paralleled their relative EC(50) values for Ca(2+) mobilisation assays, indicating improved binding affinities by substitution with 2-furoyl at the N-terminus serine. 4. Pretreatment of cells with trypsin reduced specific binding of [(3)H]2-furoyl-LIGRL-NH(2), demonstrating direct competition between the synthetic agonist peptide and the proteolytically revealed tethered ligand for the binding site of the receptor. 5. In HCT-15 cells endogenously expressing PAR2, the binding of [(3)H]2-furoyl-LIGRL-NH(2) was displaced by addition of unlabeled ligands, Ser-Leu-Ile-Gly-Lys-Val (SLIGKV-OH) or 2-furoyl-LIGRL-NH(2). The relative binding affinity of 2-furoyl-LIGRL-NH(2) to SLIGKV-OH was comparable to its relative EC(50) value for Ca(2+) mobilisation assays. 6. The binding assay was successfully performed in monolayers of PAR2 expressing NCTC2544 and human umbilical vein endothelial cells (HUVEC), in 96- and 24-well plate formats, respectively. 7. These studies indicate that [(3)H]2-furoyl-LIGRL-NH(2) binds to human PAR2 at its ligand-binding site. The use of this radioligand will be valuable for characterising chemicals that interact to PAR2
    corecore