26 research outputs found

    A Combined Discrete/Continuum Solvation Model: Application to Glycine

    Get PDF
    A new solvation model that combines discrete and continuum descriptions of the solvent has been developed. The discrete solvent molecules are represented by effective fragment potentials (EFP), while the continuum is represented by the Onsager model. This (EFP+Onsager) model has been applied to the relative stabilities of the neutral and zwitterionic forms of glycine. Other supermolecule-continuum calculations were also performed, using quantum mechanical discrete waters and the isodensity polarizable continuum model (IPCM) or solvation model 5.42R (SM5.42R) for the continuum. It is shown that the Onsager model provides a poor description of the solvent in the supermolecule-continuum calculations. On the other hand, more sophisticated models can predict the correct energy order of the glycine isomers. Thus, the development of mixed methods that combine sophisticated continuum models with the discrete EFP model appear to be promising

    The Alkaline Hydrolysis of Sulfonate Esters: Challenges in Interpreting Experimental and Theoretical Data

    Get PDF
    Sulfonate ester hydrolysis has been the subject of recent debate, with experimental evidence interpreted in terms of both stepwise and concerted mechanisms. In particular, a recent study of the alkaline hydrolysis of a series of benzene arylsulfonates (Babtie et al., Org. Biomol. Chem. 10, 2012, 8095) presented a nonlinear Brønsted plot, which was explained in terms of a change from a stepwise mechanism involving a pentavalent intermediate for poorer leaving groups to a fully concerted mechanism for good leaving groups and supported by a theoretical study. In the present work, we have performed a detailed computational study of the hydrolysis of these compounds and find no computational evidence for a thermodynamically stable intermediate for any of these compounds. Additionally, we have extended the experimental data to include pyridine-3-yl benzene sulfonate and its N-oxide and N-methylpyridinium derivatives. Inclusion of these compounds converts the Brønsted plot to a moderately scattered but linear correlation and gives a very good Hammett correlation. These data suggest a concerted pathway for this reaction that proceeds via an early transition state with little bond cleavage to the leaving group, highlighting the care that needs to be taken with the interpretation of experimental and especially theoretical data

    Vibrational spectra of α-amino acids in the zwitterionic state in aqueous solution and the solid state: DFT calculations and the influence of hydrogen bonding

    No full text
    The zwitterionic forms of the two simplest alpha-amino acids, glycine and l-alanine, in aqueous solution and the solid state have been modeled by DFT calculations. Calculations of the structures in the solid state, using PW91 or PBE functionals, are in good agreement with the reported crystal structures, and the vibrational spectra computed at the optimized geometries provide a good fit to the observed IR and Raman spectra in the solid state. DFT calculations of the structures and vibrational spectra of the zwitterions in aqueous solution at the B3-LYP/cc-pVDZ level were found to require both explicit and implicit solvation models. Explicit solvation was modeled by inclusion of five hydrogen-bonded water molecules attached to each of the five possible hydrogen-bonding sites in the zwitterion and the integration equation formalism polarizable continuum model (IEF-PCM) was employed, providing a satisfactory fit to observed IR and Raman spectra. Band assignments are reported in terms of potential-energy distributions, which differ in some respects to those previously reported for glycine and l-alanine
    corecore