4 research outputs found

    Motivational Salience Modulates Hippocampal Repetition Suppression and Functional Connectivity in Humans

    Get PDF
    Repetition suppression (RS) is a rapid decrease of stimulus-related neuronal responses upon repeated presentation of a stimulus. Previous studies have demonstrated that negative emotional salience of stimuli enhances RS. It is, however, unclear how motivational salience of stimuli, such as reward-predicting value, influences RS for complex visual stimuli, and which brain regions might show differences in RS for reward-predicting and neutral stimuli. Here we investigated the influence of motivational salience on RS of complex scenes using event-related functional magnetic resonance imaging. Thirty young healthy volunteers performed a monetary incentive delay task with complex scenes (indoor vs. outdoor) serving as neutral or reward-predicting cue pictures. Each cue picture was presented three times. In line with previous findings, reward anticipation was associated with activations in the ventral striatum, midbrain, and orbitofrontal cortex (OFC). Stimulus repetition was associated with pronounced RS in ventral visual stream areas like the parahippocampal place area (PPA). An interaction of reward anticipation and RS was specifically observed in the anterior hippocampus, where a response decrease across repetitions was observed for the reward-predicting scenes only. Functional connectivity analysis further revealed specific activity-dependent connectivity increases of the hippocampus and the PPA and OFC. Our results suggest that hippocampal RS is sensitive to reward-predicting properties of stimuli and might therefore reflect a rapid, adaptive neural response mechanism for motivationally salient information

    A Potential Role for a Genetic Variation of AKAP5 in Human Aggression and Anger Control

    Get PDF
    The A-kinase-anchoring protein 5 (AKAP5), a post-synaptic multi-adaptor molecule that binds G-protein-coupled receptors and intracellular signaling molecules has been implicated in emotional processing in rodents, but its role in human emotion and behavior is up to now still not quite clear. Here, we report an association of individual differences in aggressive behavior and anger expression with a functional genetic polymorphism (Pro100Leu) in the human AKAP5 gene. Among a cohort of 527 young, healthy individuals, carriers of the less common Leu allele (15.6% allele frequency) scored significantly lower in the physical aggression domain of the Buss and Perry Aggression Questionnaire and higher in the anger control dimension of the state-trait anger expression inventory. In a functional magnetic resonance imaging experiment we could further demonstrate that AKAP5 Pro100Leu modulates the interaction of negative emotional processing and executive functions. In order to investigate implicit processes of anger control, we used the well-known flanker task to evoke processes of action monitoring and error processing and added task-irrelevant neutral or angry faces in the background of the flanker stimuli. In line with our predictions, Leu carriers showed increased activation of the anterior cingulate cortex (ACC) during emotional interference, which in turn predicted shorter reaction times and might be related to stronger control of emotional interference. Conversely, Pro homozygotes exhibited increased orbitofrontal cortex (OFC) activation during emotional interference, with no behavioral advantage. Immunohistochemistry revealed AKAP5 expression in post mortem human ACC and OFC. Our results suggest that AKAP5 Pro100Leu contributes to individual differences in human aggression and anger control. Further research is warranted to explore the detailed role of AKAP5 and its gene product in human emotion processing

    Fronto-limbic novelty processing in acute psychosis: disrupted relationship with memory performance and potential implications for delusions

    No full text
    Recent concepts have highlighted the role of the hippocampus and adjacent medial temporal lobe (MTL) in positive symptoms like delusions in schizophrenia. In healthy individuals, the MTL is critically involved in the detection and encoding of novel information. Here, we aimed to investigate whether dysfunctional novelty processing by the MTL might constitute a potential neural mechanism contributing to the pathophysiology of delusions, using functional magnetic resonance imaging (fMRI) in 16 unmedicated patients with paranoid schizophrenia and 20 age-matched healthy controls. All patients experienced positive symptoms at time of participation. Participants performed a visual target detection task with complex scene stimuli in which novel and familiar rare stimuli were presented randomly intermixed with a standard and a target picture. Presentation of novel relative to familiar images was associated with hippocampal activation in both patients and healthy controls, but only healthy controls showed a positive relationship between novelty-related hippocampal activation and recognition memory performance after 24 hours. Patients, but not controls, showed a robust neural response in the orbitofrontal cortex (OFC) during presentation of novel stimuli. Functional connectivity analysis in the patients further revealed a novelty-related increase of functional connectivity of both the hippocampus and the OFC with the rostral anterior cingulate cortex (rACC) and the ventral striatum. Notably, delusions correlated positively with the difference of the functional connectivity of the hippocampus versus the OFC with the rACC. Taken together, our results suggest that alterations of fronto-limbic novelty processing may contribute to the pathophysiology of delusions in patients with acute psychosis

    Motivational salience and genetic variability of dopamine D2 receptor expression interact in the modulation of interference processing

    No full text
    Dopamine has been implicated in the fine-tuning of complex cognitive and motor function and also in the anticipation of future rewards. This dual function of dopamine suggests that dopamine might be involved in the generation of active motivated behavior. The DRD2 TaqIA polymorphism of the dopamine D2 receptor gene (rs1800497) has previously been suggested to affect striatal function with carriers of the less common A1 allele exhibiting reduced striatal D2 receptor density and increased risk for addiction. Here we aimed to investigate the influences of DRD2 TaqIA genotype on the modulation of interference processing by reward and punishment. 46 young, healthy volunteers participated in a behavioral experiment, and 32 underwent functional magnetic resonance imaging (fMRI). Participants performed a flanker task with a motivation manipulation (monetary reward, monetary loss, neither, or both). Reaction times (RTs) were shorter in motivated flanker trials, irrespective of congruency. In the fMRI experiment motivation was associated with reduced prefrontal activation during incongruent versus congruent flanker trials, possibly reflecting increased processing efficiency. DRD2 TaqIA genotype did not affect overall RTs, but interacted with motivation on the congruency-related RT differences, with A1 carriers showing smaller interference effects to reward alone and A2 homozygotes exhibiting a specific interference reduction during combined reward and punishment trials. In fMRI, anterior cingulate activity showed a similar pattern of genotype-related modulation. Additionally, A1 carriers showed increased anterior insula activation relative to A2 homozygotes. Our results point to a role for genetic variations of the dopaminergic system in individual differences of cognition-motivation interaction
    corecore