28 research outputs found

    Epigenetic Drifts during Long-Term Intestinal Organoid Culture

    Get PDF
    Organoids retain the morphological and molecular patterns of their tissue of origin, are self-organizing, relatively simple to handle and accessible to genetic engineering. Thus, they represent an optimal tool for studying the mechanisms of tissue maintenance and aging. Long-term expansion under standard growth conditions, however, is accompanied by changes in the growth pattern and kinetics. As a potential explanation of these alterations, epigenetic drifts in organoid culture have been suggested. Here, we studied histone tri-methylation at lysine 4 (H3K4me3) and 27 (H3K27me3) and transcriptome profiles of intestinal organoids derived from mismatch repair (MMR)-deficient and control mice and cultured for 3 and 20 weeks and compared them with data on their tissue of origin. We found that, besides the expected changes in short-term culture, the organoids showed profound changes in their epigenomes also during the long-term culture. The most prominent were epigenetic gene activation by H3K4me3 recruitment to previously unmodified genes and by H3K27me3 loss from originally bivalent genes. We showed that a long-term culture is linked to broad transcriptional changes that indicate an ongoing maturation and metabolic adaptation process. This process was disturbed in MMR-deficient mice, resulting in endoplasmic reticulum (ER) stress and Wnt activation. Our results can be explained in terms of a mathematical model assuming that epigenetic changes during a long-term culture involve DNA demethylation that ceases if the metabolic adaptation is disturbed

    Linking DNA Damage and Age-Related Promoter DNA Hyper-Methylation in the Intestine

    No full text
    Aberrant DNA methylation in stem cells is a hallmark of aging and tumor development. Here, we explore whether and how DNA damage repair might impact on these time-dependent changes, in particular in proliferative intestinal stem cells. We introduce a 3D multiscale computer model of intestinal crypts enabling simulation of aberrant DNA and histone methylation of gene promoters during aging. We assume histone state-dependent activity of de novo DNA methyltransferases (DNMTs) and methylation-dependent binding of maintenance DNMTs to CpGs. We simulate aging with and without repeated DNA repair. Motivated by recent findings on the histone demethylase KDM2b, we consider that DNA repair is associated with chromatin opening and improved recruitment of de novo DNMTs. Our results suggest that methylation-dependent binding of maintenance DNMTs to CpGs, establishing bistable DNA methylation states, is a prerequisite to promoter hyper-methylation following DNA repair. With this, the transient increase in de novo DNMT activity during repair can induce switches from low to high methylation states. These states remain stable after repair, leading to an epigenetic drift. The switches are most frequent in genes with H3K27me3 modified promoters. Our model provides a mechanistic explanation on how even successful DNA repair might confer long term changes of the epigenome

    Skin single-cell transcriptomics reveals a core of sebaceous gland-relevant genes shared by mice and humans

    No full text
    Abstract Background Single-cell RNA sequencing (scRNA-seq) has been widely applied to dissect cellular heterogeneity in normal and diseased skin. Sebaceous glands, essential skin components with established functions in maintaining skin integrity and emerging roles in systemic energy metabolism, have been largely neglected in scRNA-seq studies. Methods Departing from mouse and human skin scRNA-seq datasets, we identified gene sets expressed especially in sebaceous glands with the open-source R-package oposSOM. Results The identified gene sets included sebaceous gland-typical genes as Scd3, Mgst1, Cidea, Awat2 and KRT7. Surprisingly, however, there was not a single overlap among the 100 highest, exclusively in sebaceous glands expressed transcripts in mouse and human samples. Notably, both species share a common core of only 25 transcripts, including mitochondrial and peroxisomal genes involved in fatty acid, amino acid, and glucose processing, thus highlighting the intense metabolic rate of this gland. Conclusions This study highlights intrinsic differences in sebaceous lipid synthesis between mice and humans, and indicates an important role for peroxisomal processes in this context. Our data also provides attractive starting points for experimentally addressing novel candidates regulating sebaceous gland homeostasis

    Organoid Cultures In Silico: Tools or Toys?

    No full text
    The implementation of stem-cell-based organoid culture more than ten years ago started a development that created new avenues for diagnostic analyses and regenerative medicine. In parallel, computational modelling groups realized the potential of this culture system to support their theoretical approaches to study tissues in silico. These groups developed computational organoid models (COMs) that enabled testing consistency between cell biological data and developing theories of tissue self-organization. The models supported a mechanistic understanding of organoid growth and maturation and helped linking cell mechanics and tissue shape in general. What comes next? Can we use COMs as tools to complement the equipment of our biological and medical research? While these models already support experimental design, can they also quantitatively predict tissue behavior? Here, we review the current state of the art of COMs and discuss perspectives for their application

    Linking DNA Damage and Age-Related Promoter DNA Hyper-Methylation in the Intestine

    No full text
    Aberrant DNA methylation in stem cells is a hallmark of aging and tumor development. Here, we explore whether and how DNA damage repair might impact on these time-dependent changes, in particular in proliferative intestinal stem cells. We introduce a 3D multiscale computer model of intestinal crypts enabling simulation of aberrant DNA and histone methylation of gene promoters during aging. We assume histone state-dependent activity of de novo DNA methyltransferases (DNMTs) and methylation-dependent binding of maintenance DNMTs to CpGs. We simulate aging with and without repeated DNA repair. Motivated by recent findings on the histone demethylase KDM2b, we consider that DNA repair is associated with chromatin opening and improved recruitment of de novo DNMTs. Our results suggest that methylation-dependent binding of maintenance DNMTs to CpGs, establishing bistable DNA methylation states, is a prerequisite to promoter hyper-methylation following DNA repair. With this, the transient increase in de novo DNMT activity during repair can induce switches from low to high methylation states. These states remain stable after repair, leading to an epigenetic drift. The switches are most frequent in genes with H3K27me3 modified promoters. Our model provides a mechanistic explanation on how even successful DNA repair might confer long term changes of the epigenome

    AgeFactDB-the JenAge Ageing Factor Database-towards data integration in ageing research

    No full text
    ABSTRACT AgeFactDB (http://agefactdb.jenage.de) is a database aimed at the collection and integration of ageing phenotype data including lifespan information. Ageing factors are considered to be genes, chemical compounds or other factors such as dietary restriction, whose action results in a changed lifespan or another ageing phenotype. Any information related to the effects of ageing factors is called an observation and is presented on observation pages. To provide concise access to the complete information for a particular ageing factor, corresponding observations are also summarized on ageing factor pages. In a first step, ageing-related data were primarily taken from existing databases such as the Ageing Gene Database-GenAge, the Lifespan Observations Database and the Dietary Restriction Gene Database-GenDR. In addition, we have started to include new ageing-related information. Based on homology data taken from the HomoloGene Database, AgeFactDB also provides observation and ageing factor pages of genes that are homologous to known ageing-related genes. These homologues are considered as candidate or putative ageing-related genes. AgeFactDB offers a variety of search and browse options, and also allows the download of ageing factor or observation lists in TSV, CSV and XML formats
    corecore