26 research outputs found
Optimization of a neutron dosimeter for the high energy accelerators
In high energy accelerator facilities the neutron radiation should be continuously measured during operation to control the ambient dose. This requires a reliable neutron dosimeter in a wide energy range. In this work we present an optimization of a compact cylindrical passive neutron dosimeter for the usage in wide energy neutron fields
Optimization of a neutron dosimeter for the high energy accelerators
In high energy accelerator facilities the neutron radiation should be continuously measured during operation to control the ambient dose. This requires a reliable neutron dosimeter in a wide energy range. In this work we present an optimization of a compact cylindrical passive neutron dosimeter for the usage in wide energy neutron fields
Radiation protection design for the Super-FRS and SIS100 at the international FAIR facility
The new accelerator SIS100 and the Super-FRS will be built at the international Facility for Antiprotons and Ion Research FAIR. The synchrotron SIS100 is a core part of the FAIR facility which serves for acceleration of ions like Uranium up to 2.7 GeV/u with intensities of 3x1011 particles per second or protons up to 30 GeV with intensities of 5x1012 particles per second. The Super-FRS is a superconducting fragment separator, it will be able to separate all kinds of nuclear projectile fragments of primary heavy ion beams including Uranium with energies up to 1.5 GeV/u and intensities up to 3x1011 particles per second. During operation activation of several components, especially the production target and the beam catchers will take place. For handling of highly activated components it is foreseen to have a hot cell with connected storage place. All calculations for the optimisation of the shielding design of the SIS100, the Super-FRS and the hot cell were performed using the Monte Carlo code FLUKA, results are presented