1,603 research outputs found

    FLT3 Length Mutations as Marker for Follow-Up Studies in Acute Myeloid Leukaemia

    Get PDF
    Length mutations within the FLT3 gene (FLT3-LM) can be found in 23% of acute myeloid leukaemia (AML) and thus are the most frequent mutations in AML. FLT3-LM are highly correlated with AML with normal karyotype and other cytogenetic aberrations of the prognostically intermediate group. This group is supposed to be a mixed group of AML with differences in the underlying pathogenesis. For more individualized treatment options it would be helpful to better characterize this large AML group not only by molecular mutations but also use these markers for the definition of minimal residual disease (MRD). However, so far the cytogenetically intermediate AML has been lacking suitable markers for PCR-based MRD detection like the fusion genes in the prognostically favourable subgroups. The suitability of the FLT3-LM as a target for PCR-based MRD was discussed controversially as it seemed to be a rather unstable marker. Thus, we aimed at the evaluation of FLT3-LM as a marker for residual disease in a large cohort of AML. Paired samples of 97 patients with AML at diagnosis and at relapse were analyzed. It could be shown that in only four cases a loss of the length mutation was detected. This is in the range of other well-characterized AML relapsing with a different geno- and/or phenotype. In contrast, a change in the ratio of the mutated allele in comparison to the wild-type allele was frequently observed. In detail, the FLT3-LM showed a tendency to accumulate during disease progression and was found more frequently at relapse than at diagnosis. In addition, 45 patients were analyzed at different time points during and after therapy. Using conventional PCR it clearly could be shown that for most of the patients positive at presentation FLT3-LM is a reliable PCR marker for monitoring treatment response. Even an early detection of relapse was possible in some cases. Copyright (C) 2004 S. Karger AG, Basel

    Optimization of the indications for allogeneic stem cell transplantation in Acute Myeloid Leukemia based on interactive diagnostic strategies

    Get PDF
    The indications for allogeneic stem cell transplantation (SCT) in Acute Myeloid Leukemia (AML) represent a real challenge due to the clinical and genetic heterogeneity of the disorder. Therefore, an optimized indication for SCT in AML first requires the determination of the individual relapse risk based on diverse chromosomal and molecular prognosis-defining aberrations. A broad panel of diagnostic methods is needed to allow such subclassification and prognostic stratification: cytomorphology, cytogenetics, molecular genetics, and immunophenotyping by multiparameter flow cytometry. These methods should not be seen as isolated techniques but as parts of an integral network with hierarchies and interactions. Examples for a poor risk constellation as a clear indication for allogeneic SCT are provided by anomalies of chromosome 7, complex aberrations, or FLT3-length mutations. In contrast, the favorable reciprocal translocations such as the t(15;17)/PML-RARA or t(8;21)/AML1-ETO are not indications for SCT in first remission due to the rather good prognosis after standard therapy. Further, the indication for SCT should include the results of minimal residual disease (MRD) diagnostics by polymerase chain reaction (PCR) or flow cytometry. New aspects for a safe and fast risk stratification as basis for an optimized indication for SCT in AML might be provided by novel technologies such as microarray-based gene expression profiling. Keywords: Acute Myeloid Leukemia (AML), Allogeneic Stem Cell Transplantation (SCT), Indication, Cytogenetics, Polymerase Chain Reaction (PCR

    Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome.

    Get PDF
    Somatic mutations in the spliceosome gene ZRSR2-located on the X chromosome-are associated with myelodysplastic syndrome (MDS). ZRSR2 is involved in the recognition of 3'-splice site during the early stages of spliceosome assembly; however, its precise role in RNA splicing has remained unclear. Here we characterize ZRSR2 as an essential component of the minor spliceosome (U12 dependent) assembly. shRNA-mediated knockdown of ZRSR2 leads to impaired splicing of the U12-type introns and RNA-sequencing of MDS bone marrow reveals that loss of ZRSR2 activity causes increased mis-splicing. These splicing defects involve retention of the U12-type introns, while splicing of the U2-type introns remain mostly unaffected. ZRSR2-deficient cells also exhibit reduced proliferation potential and distinct alterations in myeloid and erythroid differentiation in vitro. These data identify a specific role for ZRSR2 in RNA splicing and highlight dysregulated splicing of U12-type introns as a characteristic feature of ZRSR2 mutations in MDS

    Molecular analysis of myelodysplastic syndrome with isolated deletion of the long arm of chromosome 5 reveals a specific spectrum of molecular mutations with prognostic impact: a study on 123 patients and 27 genes

    Get PDF
    The only cytogenetic aberration defining a myelodysplastic syndrome subtype is the deletion of the long arm of chromosome 5, which, along with morphological features, leads to the diagnosis of myelodysplastic syndrome with isolated deletion of the long arm of chromosome 5. These patients show a good prognosis and respond to treatment such as lenalidomide, but some cases progress to acute myeloid leukemia; however, the molecular mutation pattern is rarely characterized. Therefore, we investigated a large cohort of 123 myelodysplastic syndrome patients with isolated deletion of the long arm of chromosome 5, diagnosed following the World Health Organization classifications 2008 and 2016, by sequencing 27 genes. A great proportion of patients showed no or only one mutation. Only seven genes showed mutation frequencies >5% (SF3B1, DNMT3A, TP53, TET2, CSNK1A1, ASXL1, JAK2). However, the pattern of recurrently mutated genes was comparable to other myelodysplastic syndrome subtypes by comparison to a reference cohort, except that of TP53 which was significantly more often mutated in myelodysplastic syndrome with isolated deletion of the long arm of chromosome 5. As expected, SF3B1 was frequently mutated and correlated with ring sider-oblasts, while JAK2 mutations correlated with elevated platelet counts. Surprisingly, SF3B1 mutations led to significantly worse prognosis within cases with isolated deletion of the long arm of chromosome 5, but showed a comparable outcome to other myelodysplastic syndrome subtypes with SF3B1 mutation. However, addressing genetic stability in follow-up cases might suggest different genetic mechanisms for progression to secondary acute myeloid leukemia compared to overall myelodysplastic syndrome patients

    A comparative study of molecular mutations in 381 patients with myelodysplastic syndrome and in 4130 patients with acute myeloid leukemia

    Get PDF
    Background and Objectives The precise relationship between myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) is unclear and the role of molecular mutations in leukemic transformation in MDS is controversial. The aim of this study was to clarify the relationship between AML and MDS by comparing the frequency of molecular mutations in the two conditions.Design and Methods We compared the frequency of FLT3-length mutations (FLT3-LM), FLT3-TKD, MLL-partial tandem duplications (MLL-PTD), NRAS, and KITD816 in 381 patients with MDS refractory anemia with excess blasts [RAEB] n=49; with ringed sideroblasts [RARS] n=310; chronic monomyelocytic leukemia [CMML] n=22) and in 4130 patients with AML (de novo: n=3139; secondary AML [s-AML] following MDS: n=397; therapy-related [t-AML]: n=233; relapsed: n=361).Results All mutations were more frequent in s-AML than in MDS and all but the FLT3-TKD were more frequent in RAEB than in RA/RARS. The higher incidences in s-AML were significant for FLT3-TKD (p=0.032), MLL-PTD (p=0.034), and FLT3-LM (RA/RARS: 0/45; RAEB: 8/293; 2.7%; s-AML: 45/389; 11.6%;
    corecore