7 research outputs found

    Performance of radiomics features in the quantification of idiopathic pulmonary fibrosis from HRCT

    Get PDF
    Background: Our study assesses the diagnostic value of different features extracted from high resolution computed tomography (HRCT) images of patients with idiopathic pulmonary fibrosis. These features are investigated over a range of HRCT lung volume measurements (in Hounsfield Units) for which no prior study has yet been published. In particular, we provide a comparison of their diagnostic value at different Hounsfield Unit (HU) thresholds, including corresponding pulmonary functional tests. Methods: We consider thirty-two patients retrospectively for whom both HRCT examinations and spirometry tests were available. First, we analyse the HRCT histogram to extract quantitative lung fibrosis features. Next, we evaluate the relationship between pulmonary function and the HRCT features at selected HU thresholds, namely -200 HU, 0 HU, and +200 HU. We model the relationship using a Poisson approximation to identify the measure with the highest log-likelihood. Results: Our Poisson models reveal no difference at the -200 and 0 HU thresholds. However, inferential conclusions change at the +200 HU threshold. Among the HRCT features considered, the percentage of normally attenuated lung at -200 HU shows the most significant diagnostic utility. Conclusions: The percentage of normally attenuated lung can be used together with qualitative HRCT assessment and pulmonary function tests to enhance the idiopathic pulmonary fibrosis (IPF) diagnostic process

    Contribution of pulmonary function tests (PFTs) to the diagnosis and follow up of connective tissue diseases

    Get PDF
    Introduction: Connective Tissue Diseases (CTDs) are systemic autoimmune conditions characterized by frequent lung involvement. This usually takes the form of Interstitial Lung Disease (ILD), but Obstructive Lung Disease (OLD) and Pulmonary Artery Hypertension (PAH) can also occur. Lung involvement is often severe, representing the first cause of death in CTD. The aim of this study is to highlight the role of Pulmonary Function Tests (PFTs) in the diagnosis and follow up of CTD patients. Main body: Rheumatoid Arthritis (RA) showed mainly an ILD with a Usual Interstitial Pneumonia (UIP) pattern in High-Resolution Chest Tomography (HRCT). PFTs are able to highlight a RA-ILD before its clinical onset and to drive follow up of patients with Forced Vital Capacity (FVC) and Carbon Monoxide Diffusing Capacity (DL CO ). In the course of Scleroderma Spectrum Disorders (SSDs) and Idiopathic Inflammatory Myopathies (IIMs), DL CO appears to be more sensitive than FVC in highlighting an ILD, but it can be compromised by the presence of PAH. A restrictive respiratory pattern can be present in IIMs and Systemic Lupus Erythematosus due to the inflammatory involvement of respiratory muscles, the presence of fatigue or diaphragm distress. Conclusions: The lung should be carefully studied during CTDs. PFTs can represent an important prognostic tool for diagnosis and follow up of RA-ILD, but, on their own, lack sufficient specificity or sensitivity to describe lung involvement in SSDs and IIMs. Several composite indexes potentially able to describe the evolution of lung damage and response to treatment in SSDs are under investigation. Considering the potential severity of these conditions, an HRCT jointly with PFTs should be performed in all new diagnoses of SSDs and IIMs. Moreover, follow up PFTs should be interpreted in the light of the risk factor for respiratory disease related to each disease

    Prevention of Breast Cancer

    No full text

    Is it Heuristics in Use or ‘Ritualistic and Instrumentalist’ in Purpose? Neoliberal Philosophy and the Use of KAPS (Knowledge, Attitude and Practise Surveys) in a Least Developed Nation

    No full text
    corecore