62 research outputs found

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Quantum Gravity Phenomenology Induced in the Propagation of UHECR, a Kinematical Solution in Finsler and Generalized Finsler Spacetime

    No full text
    It is well-known that the universe is opaque to the propagation of Ultra-High-Energy Cosmic Rays (UHECRs) since these particles dissipate energy during their propagation interacting with the background fields present in the universe, mainly with the Cosmic Microwave Background (CMB) in the so-called GZK cut-off phenomenon. Some experimental evidence seems to hint at the possibility of a dilation of the GZK predicted opacity sphere. It is well-known that kinematical perturbations caused by supposed quantum gravity (QG) effects can modify the foreseen GZK opacity horizon. The introduction of Lorentz Invariance Violation can indeed reduce, and in some cases making negligible, the CMB-UHECRs interaction probability. In this work, we explore the effects induced by modified kinematics in the UHECR lightest component phenomenology from the QG perspective. We explore the possibility of a geometrical description of the massive fermions interaction with the supposed quantum structure of spacetime in order to introduce a Lorentz covariance modification. The kinematics are amended, modifying the dispersion relations of free particles in the context of a covariance-preserving framework. This spacetime description requires a more general geometry than the usual Riemannian one, indicating, for instance, the Finsler construction and the related generalized Finsler spacetime as ideal candidates. Finally we investigate the correlation between the magnitude of Lorentz covariance modification and the attenuation length of the photopion production process related to the GZK cut-off, demonstrating that the predicted opacity horizon can be dilated even in the context of a theory that does not require any privileged reference frame

    Quantum Gravity Phenomenology Induced in the Propagation of UHECR, a Kinematical Solution in Finsler and Generalized Finsler Spacetime

    No full text
    It is well-known that the universe is opaque to the propagation of Ultra-High-Energy Cosmic Rays (UHECRs) since these particles dissipate energy during their propagation interacting with the background fields present in the universe, mainly with the Cosmic Microwave Background (CMB) in the so-called GZK cut-off phenomenon. Some experimental evidence seems to hint at the possibility of a dilation of the GZK predicted opacity sphere. It is well-known that kinematical perturbations caused by supposed quantum gravity (QG) effects can modify the foreseen GZK opacity horizon. The introduction of Lorentz Invariance Violation can indeed reduce, and in some cases making negligible, the CMB-UHECRs interaction probability. In this work, we explore the effects induced by modified kinematics in the UHECR lightest component phenomenology from the QG perspective. We explore the possibility of a geometrical description of the massive fermions interaction with the supposed quantum structure of spacetime in order to introduce a Lorentz covariance modification. The kinematics are amended, modifying the dispersion relations of free particles in the context of a covariance-preserving framework. This spacetime description requires a more general geometry than the usual Riemannian one, indicating, for instance, the Finsler construction and the related generalized Finsler spacetime as ideal candidates. Finally we investigate the correlation between the magnitude of Lorentz covariance modification and the attenuation length of the photopion production process related to the GZK cut-off, demonstrating that the predicted opacity horizon can be dilated even in the context of a theory that does not require any privileged reference frame

    Neutrino Oscillations and Lorentz Invariance Violation

    No full text
    This work explores the possibility of resorting to neutrino phenomenology to detect evidence of new physics, caused by the residual signals of the supposed quantum structure of spacetime. In particular, this work investigates the effects on neutrino oscillations and mass hierarchy detection, predicted by models that violate Lorentz invariance, preserving the spacetime isotropy and homogeneity. Neutrino physics is the ideal environment where conducting the search for new “exotic” physics, since the oscillation phenomenon is not included in the original formulation of the minimal Standard Model (SM) of particles. The confirmed observation of the neutrino oscillation phenomenon is, therefore, the first example of physics beyond the SM and can indicate the necessity to resort to new theoretical models. In this work, the hypothesis that the supposed Lorentz Invariance Violation (LIV) perturbations can influence the oscillation pattern is investigated. LIV theories are indeed constructed assuming modified kinematics, caused by the interaction of massive particles with the spacetime background. This means that the dispersion relations are modified, so it appears natural to search for effects caused by LIV in physical phenomena governed by masses, as in the case of neutrino oscillations. In addition, the neutrino oscillation phenomenon is interesting since there are three different mass eigenstates and in a LIV scenario, which preserves isotropy, at least two different species of particle must interact

    Homogeneously Modified Special relativity (HMSR)

    No full text
    This work explores a Standard Model extension possibility, that violates Lorentz invariance, preserving the space-time isotropy and homogeneity. In this sense HMSR represents an attempt to introduce an isotropic Lorentz Invariance Violation in the elementary particle SM. The theory is constructed starting from a modified kinematics, that takes into account supposed quantum effects due to interaction with the space-time background. The space-time structure itself is modified, resulting in a pseudo-Finsler manifold. The SM extension here provided is inspired by the effective fields theories, but it preserves covariance, with respect to newly introduced modified Lorentz transformations. Geometry perturbations are not considered as universal, but particle species dependent. Non universal character of the amended Lorentz transformations allows to obtain visible physical effects, detectable in experiments by comparing different perturbations related to different interacting particles species

    Phenomenological Effects of CPT and Lorentz Invariance Violation in Particle and Astroparticle Physics

    No full text
    It is well known that a fundamental theorem of Quantum Field Theory (QFT) set in flat spacetime ensures the CPT invariance of the theory. This symmetry is strictly connected to the Lorentz covariance, and consequently to the fundamental structure of spacetime. Therefore it may be interesting to investigate the possibility of departure from this fundamental symmetry, since it can furnish a window to observe possible effects of a more fundamental quantum gravity theory in a “lower energy limit”. Moreover, in the past, the inquiry of symmetry violations provided a starting point for new physics discoveries. A useful physical framework for this kind of search is provided by astroparticle physics, thanks to the high energy involved and to the long path travelled by particles accelerated by an astrophysical object and then revealed on Earth. Astrophysical messengers are therefore very important probes for investigating this sector, involving high energy photons, charged particles, and neutrinos of cosmic origin. In addition, one can also study artificial neutrino beams, investigated at accelerator experiments. Here we discuss the state of art for all these topics and some interesting new proposals, both from a theoretical and phenomenological point of view

    The JUNO experiment Top Tracker

    No full text
    20 pagesInternational audienceThe main task of the Top Tracker detector of the neutrino reactor experiment Jiangmen Underground Neutrino Observatory (JUNO) is to reconstruct and extrapolate atmospheric muon tracks down to the central detector. This muon tracker will help to evaluate the contribution of the cosmogenic background to the signal. The Top Tracker is located above JUNO's water Cherenkov Detector and Central Detector, covering about 60% of the surface above them. The JUNO Top Tracker is constituted by the decommissioned OPERA experiment Target Tracker modules. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multianode photomultiplier tubes. Compared to the OPERA Target Tracker, the JUNO Top Tracker uses new electronics able to cope with the high rate produced by the high rock radioactivity compared to the one in Gran Sasso underground laboratory. This paper will present the new electronics and mechanical structure developed for the Top Tracker of JUNO along with its expected performance based on the current detector simulation

    The Design and Technology Development of the JUNO Central Detector

    No full text
    International audienceThe Jiangmen Underground Neutrino Observatory (JUNO) is a large scale neutrino experiment with multiple physics goals including deter mining the neutrino mass hierarchy, the accurate measurement of neutrino oscillation parameters, the neutrino detection from the super nova, the Sun, and the Earth, etc. JUNO puts forward physically and technologically stringent requirements for its central detector (CD), including a large volume and target mass (20 kt liquid scintillator, LS), a high energy resolution (3% at 1 MeV), a high light transmittance, the largest possible photomultiplier (PMT) coverage, the lowest possible radioactive background, etc. The CD design, using a spherical acrylic vessel with a diameter of 35.4 m to contain the LS and a stainless steel structure to support the acrylic vessel and PMTs, was chosen and optimized. The acrylic vessel and the stainless steel structure will be immersed in pure water to shield the radioactive back ground and bear great buoyancy. The challenging requirements of the acrylic sphere have been achieved, such as a low intrinsic radioactivity and high transmittance of the manufactured acrylic panels, the tensile and compressive acrylic node design with embedded stainless steel pad, one-time polymerization for multiple bonding lines. Moreover, several technical challenges of the stainless steel structure have been solved: the production of low radioactivity stainless steel material, the deformation and precision control during production and assembly, the usage of high strength stainless steel rivet bolt and of high friction efficient linkage plate. Finally, the design of the ancillary equipment like the LS filling, overflowing and circulating system was done
    • …
    corecore