444 research outputs found

    Asteroid Redirect Mission (ARM) using Solar Electric Propulsion (SEP) for Research, Mining, and Exploration Endeavors of Near-Earth Objects (NEOs)

    Get PDF
    The feasibility of relocating a small (~500,000 kg) Near-Earth Asteroid (NEA) to High Earth Orbit via Solar Electric Propulsion (SEP) is evaluated with the orbital simulation software General Mission Analysis Tool (GMAT). Using prior research as a basis for the mission parameters, a retrieval mission to NEA 2008 HU4 is simulated in two parts: approach from Earth and return of the Asteroid Redirect Vehicle (ARV) with the asteroid in tow. Success of such a mission would pave the way for future missions to larger NEAs and other deep space endeavors. It is shown that for a hypothetical launch time of 24 May 2016, the ARV could arrive within 25 km of 2008 HU4 on 28 Jun 2017 with a Delta V of 0.406 km/s, begin return maneuver on 08 Dec 2017 and reach Earth altitude of 450,000 km by 23 Apr 2026 with a Delta V of 44.639 m/s

    Recoiling black holes: prospects for detection and implications of spin alignment

    Get PDF
    Supermassive black hole (BH) mergers produce powerful gravitational wave (GW) emission. Asymmetry in this emission imparts a recoil kick to the merged BH, which can eject the BH from its host galaxy altogether. Recoiling BHs could be observed as offset active galactic nuclei (AGN). Several candidates have been identified, but systematic searches have been hampered by large uncertainties regarding their observability. By extracting merging BHs and host galaxy properties from the Illustris cosmological simulations, we have developed a comprehensive model for recoiling AGN. Here, for the first time, we model the effects of BH spin alignment and recoil dynamics based on the gas-richness of host galaxies. We predict that if BH spins are not highly aligned, seeing-limited observations could resolve offset AGN, making them promising targets for all-sky surveys. For randomly-oriented spins, less than about 10 spatially-offset AGN may be detectable in HST-COSMOS, and > 10^3 could be found with Pan-STARRS, LSST, Euclid, and WFIRST. Nearly a thousand velocity-offset AGN are predicted within the SDSS footprint; the rarity of large broad-line offsets among SDSS quasars is likely due in part to selection effects but suggests that spin alignment plays a role in suppressing recoils. Nonetheless, in our most physically motivated model where alignment occurs only in gas-rich mergers, hundreds of offset AGN should be found in all-sky surveys. Our findings strongly motivate a dedicated search for recoiling AGN.Comment: 30 pages, 19 figures. Accepted to MNRAS after minor revision

    Dust formation in Milky Way-like galaxies

    Get PDF
    We introduce a dust model for cosmological simulations implemented in the moving-mesh code arepo and present a suite of cosmological hydrodynamical zoom-in simulations to study dust formation within galactic haloes. Our model accounts for the stellar production of dust, accretion of gas-phase metals on to existing grains, destruction of dust through local supernova activity, and dust driven by winds from star-forming regions. We find that accurate stellar and active galactic nuclei feedback is needed to reproduce the observed dust–metallicity relation and that dust growth largely dominates dust destruction. Our simulations predict a dust content of the interstellar medium which is consistent with observed scaling relations at z = 0, including scalings between dust-to-gas ratio and metallicity, dust mass and gas mass, dust-to-gas ratio and stellar mass, and dust-to-stellar mass ratio and gas fraction. We find that roughly two-thirds of dust at z = 0 originated from Type II supernovae, with the contribution from asymptotic giant branch stars below 20 per cent for z ≳ 5. While our suite of Milky Way-sized galaxies forms dust in good agreement with a number of key observables, it predicts a high dust-to-metal ratio in the circumgalactic medium, which motivates a more realistic treatment of thermal sputtering of grains and dust cooling channels.United States. Department of Energy (DE-FG02-97ER25308

    Simulating galactic dust grain evolution on a moving mesh

    Full text link
    Interstellar dust is an important component of the galactic ecosystem, playing a key role in multiple galaxy formation processes. We present a novel numerical framework for the dynamics and size evolution of dust grains implemented in the moving-mesh hydrodynamics code AREPO suited for cosmological galaxy formation simulations. We employ a particle-based method for dust subject to dynamical forces including drag and gravity. The drag force is implemented using a second-order semi-implicit integrator and validated using several dust-hydrodynamical test problems. Each dust particle has a grain size distribution, describing the local abundance of grains of different sizes. The grain size distribution is discretised with a second-order piecewise linear method and evolves in time according to various dust physical processes, including accretion, sputtering, shattering, and coagulation. We present a novel scheme for stochastically forming dust during stellar evolution and new methods for sub-cycling of dust physics time-steps. Using this model, we simulate an isolated disc galaxy to study the impact of dust physical processes that shape the interstellar grain size distribution. We demonstrate, for example, how dust shattering shifts the grain size distribution to smaller sizes resulting in a significant rise of radiation extinction from optical to near-ultraviolet wavelengths. Our framework for simulating dust and gas mixtures can readily be extended to account for other dynamical processes relevant in galaxy formation, like magnetohydrodynamics, radiation pressure, and thermo-chemical processes.Comment: 38 pages, 27 figures, accepted by MNRAS, with movies available at http://www.mit.edu/~ryanmck/#researc

    The Mass Profile of the Milky Way to the Virial Radius from the Illustris Simulation

    Get PDF
    We use particle data from the Illustris simulation, combined with individual kinematic constraints on the mass of the Milky Way (MW) at specific distances from the Galactic center, to infer the radial distribution of the MW's dark matter halo mass. Our method allows us to convert any constraint on the mass of the MW within a fixed distance to a full circular velocity profile to the MW's virial radius. As primary examples, we take two recent (and discrepant) measurements of the total mass within 50 kpc of the Galaxy and find they imply very different mass profiles and stellar masses for the Galaxy. The dark-matter-only version of the Illustris simulation enables us to compute the effects of galaxy formation on such constraints on a halo-by-halo basis; on small scales, galaxy formation enhances the density relative to dark-matter-only runs, while the total mass density is approximately 20% lower at large Galactocentric distances. We are also able to quantify how current and future constraints on the mass of the MW within specific radii will be reflected in uncertainties on its virial mass: even a measurement of M(<50 kpc) with essentially perfect precision still results in a 20% uncertainty on the virial mass of the Galaxy, while a future measurement of M(<100 kpc) with 10% errors would result in the same level of uncertainty. We expect that our technique will become even more useful as (1) better kinematic constraints become available at larger distances and (2) cosmological simulations provide even more faithful representations of the observable Universe.Comment: 11 pages, 8 figures; matches version published in MNRA

    Crossing Borders The Life and Work of Peder Borgen in Context

    Full text link
    Crossing Borders: The Life and Work of Peder Borgen in Context documents his personal sojourn and contributions to church and society, in addition to covering the scholarly contribution of a world-class biblical scholar and theologian. Too rarely is a scholar’s personal story considered as the back-drop, or even the foreground, of one’s academic work. In that sense, Torrey Seland’s detailed biography is inextricably linked to Borgen’s bibliography: a multitude of connections that contextualize the intrigue and significance of an exemplary scholar’s work

    Dust in and around galaxies: dust in cluster environments and its impact on gas cooling

    Full text link
    Simulating the dust content of galaxies and their surrounding gas is challenging due to the wide range of physical processes affecting the dust evolution. Here we present cosmological hydrodynamical simulations of a cluster of galaxies, M200,crit=6×1014 M⊙M_\text{200,crit}=6 \times 10^{14}\,{\rm M_\odot}, including a novel dust model for the moving mesh code {\sc Arepo}. This model includes dust production, growth, supernova-shock-driven destruction, ion-collision-driven thermal sputtering, and high temperature dust cooling through far infrared re-radiation of collisionally deposited electron energies. Adopting a rather low thermal sputtering rate, we find, consistent with observations, a present-day overall dust-to-gas ratio of ∼2×10−5\sim 2\times 10^{-5}, a total dust mass of ∼2×109 M⊙\sim 2\times 10^9\,{\rm M_\odot}, and a dust mass fraction of ∼3×10−6\sim 3\times 10^{-6}. The typical thermal sputtering timescales within ∼100 kpc\sim 100\,{\rm kpc} are around ∼10 Myr\sim 10\,{\rm Myr}, and increase towards the outer parts of the cluster to ∼103 Myr\sim 10^3\,{\rm Myr} at a cluster-centric distance of 1 Mpc1\,{\rm Mpc}. The condensation of gas phase metals into dust grains reduces high temperature metal-line cooling, but also leads to additional dust infrared cooling. The additional infrared cooling changes the overall cooling rate in the outer parts of the cluster, beyond ∼1 Mpc\sim 1\,{\rm Mpc}, by factors of a few. This results in noticeable changes of the entropy, temperature, and density profiles of cluster gas once dust formation is included. The emitted dust infrared emission due to dust cooling is consistent with observational constraints.Comment: 14 pages, 10 figures. MNRAS accepte
    • …
    corecore