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ABSTRACT
We use particle data from the Illustris simulation, combined with individual kinematic con-
straints on the mass of the Milky Way (MW) at specific distances from the Galactic Centre,
to infer the radial distribution of the MW’s dark matter halo mass. Our method allows us to
convert any constraint on the mass of the MW within a fixed distance to a full circular velocity
profile to the MW’s virial radius. As primary examples, we take two recent (and discrepant)
measurements of the total mass within 50 kpc of the Galaxy and find that they imply very
different mass profiles and stellar masses for the Galaxy. The dark-matter-only version of
the Illustris simulation enables us to compute the effects of galaxy formation on such con-
straints on a halo-by-halo basis; on small scales, galaxy formation enhances the density rela-
tive to dark-matter-only runs, while the total mass density is approximately 20% lower at large
Galactocentric distances. We are also able to quantify how current and future constraints on
the mass of the MW within specific radii will be reflected in uncertainties on its virial mass:
even a measurement of M(< 50 kpc) with essentially perfect precision still results in a 20%
uncertainty on the virial mass of the Galaxy, while a future measurement of M(< 100 kpc)
with 10% errors would result in the same level of uncertainty. We expect that our technique
will become even more useful as (1) better kinematic constraints become available at larger
distances and (2) cosmological simulations provide even more faithful representations of the
observable Universe.

Key words: Galaxy: fundamental parameters–Galaxy: halo–Galaxy: structure–dark matter.

1 INTRODUCTION

While living within the Milky Way (MW) galaxy does have its
virtues, easily and accurately determining the mass distribution of
the Galaxy’s dark matter halo is not one of them. This is not for
lack of trying, naturally; a variety of techniques have been crafted
for just this purpose, and multiple classes of kinematic tracers are
available.

The difficulty in measuring the MW’s mass distribution is two-
fold. First, only line-of-sight information is available for the vast
majority of kinematic measurements. While great strides are be-
ing made in measuring the proper motions of both individual stars
(Cunningham et al. 2015) and dwarf galaxies (e.g., Piatek et al.
2007; Sohn et al. 2013; van der Marel et al. 2014; Pryor et al. 2015)
at large Galactocentric distances in the MW’s halo, the number of
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tracers at ∼ 50 − 100 kpc with full 6D phase space information
will remain small even in the Gaia era (de Bruijne et al. 2014). Per-
haps more importantly, the level of precision desired for the MW’s
mass is simply higher than is the case for other galaxies. Whereas
a factor of ±2 uncertainty in the mass of a typical galaxy’s halo
would be considered an excellent measurement, it is often thought
of more as an embarrassment in the case of the MW.

For example, if we take a dark matter halo mass of 1012 M�
as a fiducial estimate for the MW, changes by a factor of 2 in either
direction are the difference between: (1) an implied conversion ef-
ficiency of baryons into stars of ≈ 70% (at M = 5 × 1011 M�)
and 16% (at 2×1012 M�); (2) eliminating the too-big-to-fail prob-
lem (Boylan-Kolchin et al. 2011b, 2012) and severely exacerbating
it (Wang et al. 2012; Vera-Ciro & Helmi 2013; Jiang & van den
Bosch 2015); and (3) placing the Large Magellanic Cloud and the
Leo I dwarf spheroidal on unbound versus bound orbits (Kallivay-
alil et al. 2006, 2013; Besla et al. 2007; Boylan-Kolchin et al. 2013).

c© 2016 The Authors
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Our understanding of the MW in cosmological context relies on our
ability to know its mass to high precision.

While uncertainties are most pronounced in the outer dark
matter halo of the MW, where there are few tracers of the total
mass, they also persist at small Galactocentric distances: there are
disagreements about the mass within the solar circle at the 25%
level (e.g., Bovy et al. 2012; Schönrich 2012). At 40–80 kpc, esti-
mates differ at the 50% level (see, e.g., Williams & Evans 2015).

In this paper, we take an alternate approach to constraining the
mass distribution of the MW. Cosmological hydrodynamic simu-
lations are now producing galaxies that match a variety of obser-
vations both for statistical samples of galaxies and for individual
galaxies themselves. In particular, both the Illustris (Vogelsberger
et al. 2014b) and Eagle (Schaye et al. 2015) simulations use∼ 1010

particles within∼ 100 Mpc boxes, meaning they contain thousands
of haloes with masses comparable to that of the MW, each with of
the order 1 million particles within the virial radius. The successes
of these models, and the underlying successes of the Λ cold dark
matter (ΛCDM) model, motivate using the results of cosmological
simulations to constrain the mass distribution of the MW.

There are a number of ways one could use cosmological simu-
lations for this purpose. Indeed, several previous works on the mass
of the MW have used cosmological simulations in some capacity.
One possibility is to use dark matter haloes from large cosmolog-
ical simulations as point particles and calibrate the timing argu-
ment (Kahn & Woltjer 1959) for measuring the total mass of the
MW (Li & White 2008; González et al. 2014). Alternately, proper-
ties of satellites from cosmological simulations can be compared to
those of MW satellites such as the Magellanic Clouds, yielding es-
timates of the virial mass of the MW (Boylan-Kolchin et al. 2011a;
Busha et al. 2011; González et al. 2013; Fattahi et al. 2016). Yet an-
other possibility is to use individual, high-resolution simulations of
Milky Way-sized haloes in conjunction with kinematic information
about dwarf satellites of the MW (Boylan-Kolchin et al. 2013; Bar-
ber et al. 2014). Cosmological hydrodynamic simulations of indi-
vidual MW-mass haloes have also been used to calibrate kinematic
analyses of tracer populations in order to measure the mass of the
MW (Xue et al. 2008; Rashkov et al. 2013; Piffl et al. 2014; Wang
et al. 2015).

Our approach is to use importance sampling in a
homogeneously-resolved, large-volume cosmological simula-
tion, weighing each simulated halo by its level of consistency
with the MW; for a clear description of this technique applied to
cosmological simulations, see Busha et al. (2011). By taking any
individual constraint and using it to perform importance sampling
from simulations, we can find the mass distributions of haloes that
are consistent with the imposed constraint. An advantage of this
technique is that it allows us to easily map different constraints,
with different errors, on to mass distributions for the MW and its
dark matter halo.

Variants of importance sampling have been used to measure
the mass of the MW (Li & White 2008; Boylan-Kolchin et al.
2011a; Busha et al. 2011; González et al. 2014). However, previ-
ous work has generally focused on using dark-matter-only (DMO)
simulations to measure the total (virial) mass of the MW. With hy-
drodynamic simulations, we are able to make two improvements.
First, we are able to measure the mass distribution of the MW in
simulations that self-consistently model the effects of galaxy for-
mation on the dark matter haloes of galaxies. Secondly, we are able
to compare our constraints directly to those obtained from DMO
simulations, as a DMO version of Illustris is also publicly available.
By matching objects between the two simulations, we are able to

investigate, in detail, the effects of baryonic physics on inferences
of the mass distribution of the MW from cosmological simulations.

We generally use the mass within 50 kpc as our primary con-
straint, as this is approximately the largest radius where stellar kine-
matic tracers are found in large enough numbers to facilitate a mass
measurement. We also provide estimates for how a measurement of
the mass within 100 kpc – which future surveys may provide – will
improve our knowledge of the mass distribution at even larger radii.

This paper is structured as follows. Section 2 describes our
basic approach, provides information about the Illustris simulation,
and describes our primary analysis of the simulation. Section 3 con-
tains our main results regarding the mass distribution of the MW as
derived from haloes taken from the Illustris simulation. We also
quantify how inferences on the enclosed mass at large scales (at
250 kpc and various spherical overdensity values) depend on the
measured mass within 50 kpc and quantify the stellar masses of
galaxies having haloes consistent with the adopted mass constraint.
A discussion of our results and prospects for future improvements
is given in Section 4; our primary conclusions are given in Sec-
tion 5. Throughout this paper, error bars give 68% confidence in-
tervals unless otherwise noted.

2 METHODS

2.1 Simulations and Importance Sampling

Our analysis is based on the Illustris suite of cosmological simula-
tions (Vogelsberger et al. 2014b), which consists of paired hydro-
dynamic and DMO simulations at three different resolution levels.
Each simulation uses a periodic box of length 75h−1 Mpc and
an initial redshift of z = 127. The highest resolution simulation,
Illustris-1, uses 18203 dark matter particles and an equal number of
hydrodynamic cells initially, with a spatial resolution of 1h−1 kpc
for the dark matter. The DMO version of this simulation, Illustris-
Dark-1, uses identical initial conditions but treats the baryonic com-
ponent as collisionless mater. Two lower resolution simulation of
the same volume, Illustris-2 and Illustris-3, were also performed,
with 8 and 64 times fewer particles, respectively. The background
cosmology for all of the simulations was chosen to be consistent
with Wilkinson Microwave Anisotropy Probe-9 results (Hinshaw
et al. 2013): Ωm,0 = 0.2726, ΩΛ,0 = 0.7274, Ωb,0 = 0.0456,
σ8 = 0.809, ns = 0.963, and h = 0.704. Haloes and subhaloes in
the Illustris simulations were identified using a friends-of-friends
algorithm followed by SUBFIND (Springel et al. 2001). For fur-
ther information about the Illustris suite,1 including details about
the implementation of galaxy formation physics, see Vogelsberger
et al. (2013, 2014a).

Using Illustris to inform our understanding of the mass distri-
bution of the MW requires calculations of the mass profiles of an
unbiased sample of dark matter haloes within the simulation. Al-
though the halo catalogues provide the centres for each halo (we
only consider central halos, not subhaloes, as possible centres), a
brute-force calculation of the mass profile for each halo is pro-
hibitively expensive, as it requires repeated searches through the
∼ 1010 particles of the simulation. We instead use a K-D tree algo-
rithm, taking into account the periodic boundary conditions of the
simulation volume. The algorithm was verified against brute-force
calculations applied to Illustris-3 and Illustris-2.

1 The Illustris data are all publicly available (http://www.illustris-
project.org/); see Nelson et al. (2015) for further information.
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Mass of the Milky Way from Illustris 3

In addition to considering the mass within spherical apertures,
we also compute spherical overdensity masses with respect to three
common overdensity choices: M200,c (measured with respect to
200 ρcrit), M200,m (measured with respect to 200 ρm ≈ 55 ρcrit

for the Illustris cosmology at z = 0), and Mvir (measured with re-
spect to ∆vir ρcrit; for the Illustris cosmology at z = 0, ∆vir ≈ 97;
Bryan & Norman 1998).

2.2 Statistical Analysis

Our basic framework is to consider the Illustris simulation a plau-
sible model of galaxies in our Universe, then to assign each halo
in the simulation a weight based on how closely its enclosed mass
at some radius2 (we typically use 50 kpc in what follows) matches
observational data. The resulting weights for the halo sample then
provide a constraint on the enclosed mass of the MW at other radii.

In more detail, we take an observational measurement of the
total MW mass within a specific radius and assign a weight to each
halo in the Illustris galaxy catalog: assuming the observed mass
has a value of µ and an associated (Gaussian) error of σ, then the
weight Wi contributed by an individual halo i with enclosed mass
Mi at the specified radius is

Wi =
1√
2πσ

exp

(
−(Mi − µ)2

2σ2

)
. (1)

We can then construct the full mass or circular velocity profile and
compute the total stellar or halo mass that is consistent with the
observed constraint by using the distribution of weights assigned
to the haloes. In this analysis, we assume that observed constraints
all follow Gaussian distributions, consistent with the analyses we
incorporate, but this technique can be easily extended to any other
analytic or numerical probability distribution. In what follows, we
quote median values and confidence intervals that are centred on
the median and contain 68% of the probability distribution.

The primary observational constraint we use is the total mass
of the MW within 50 kpc, M(< 50 kpc). There are many litera-
ture estimates of the MW’s mass at approximately this scale (e.g.,
Wilkinson & Evans 1999; Battaglia et al. 2005; Xue et al. 2008;
Brown et al. 2010; Gnedin et al. 2010; Kafle et al. 2014; Eadie
et al. 2015), in large part because (1) this is approximately the
distance to which large samples of blue horizontal branch (BHB)
stars are currently available from surveys such as the Sloan Dig-
ital Sky Survey, and (2) the LMC lies at a Galactocentric dis-
tance of ≈ 50 kpc, meaning estimates of the MW mass based on
LMC’s dynamics directly constrain M(< 50 kpc). We focus on
two recent and disparate measurements of M(< 50 kpc): Dea-
son et al. (2012, hereafter D12), who used BHB stars and found
M(< 50 kpc) = 4.2 ± 0.4 × 1011 M�, and Gibbons et al.
(2014, hereafter G14), who used the Sagittarius stream to measure
M(<50 kpc) = 2.9± 0.4× 1011 M� (Gómez et al. 2015). These
measurements are clearly incompatible at the 3σ level and there-
fore are useful for showing the effects of varying M(< 50 kpc)
on the inferred mass distribution at larger radii. In Sec. 3.2, we
explicitly show how estimates of M200,c vary as a function of
M(<50 kpc).

In principle, a complete analysis would include every dark
matter halo in Illustris. In practice, however, only a relatively nar-
row range of masses contribute any weight to our inferences. We

2 Here and throughout this work, we use ’mass’ to refer to the enclosed
mass (as opposed to mass within a spherical shell)

therefore restrict our analysis to all haloes with M200,c = (0.1 −
10)×1012M�, which includes 14 192 haloes for Illustris-1, 14 316
haloes for Illustris-2, and 12 885 haloes for Illustris-3. As we show
below, this mass range is more than sufficient for including all rel-
evant haloes in our analysis and does not bias our results in any
way.

3 THE MASS DISTRIBUTION OF THE MW

3.1 The MW’s radial mass profile

Fig. 1 presents the mass distributions obtained using the constraints
on M(< 50 kpc) from D12 (left-hand panel) and G14 (right-hand
panel) from the Illustris-1 sample. The best-fitting Navarro-Frenk-
White (1997, hereafter, NFW) profiles for the total mass distribu-
tion are given in the figure as well. The fits were performed over the
radial range of 40–300 kpc, as we find a lack of convergence among
different resolution versions of Illustris on smaller scales (see be-
low; convergence in density profiles should occur at smaller scales,
as density is a differential quantity while mass and circular velocity
are cumulative quantities). Unsurprisingly, given the significantly
higher value of M(< 50 kpc) found in D12 relative to G14, the
best-fitting NFW value of M200,c for D12 is much larger than for
G14, 1.1× 1012 M� versus 0.61× 1012 M�. The best fitting con-
centration parameters are similar: c200,c = 12.2 ± 2.12 for D12
and c200,c = 13.2 ± 3.57 for G14. Both of these concentrations
are larger than those derived from large DMO simulations, which
typically find c200,c ≈ 8.33 for haloes ofM200,c ≈ 1012 M� (e.g.,
Dutton & Macciò 2014).

The lower panels of the figures show the fractional differences
of Illustris-2 and Illustris-3 with respect to their high-resolution
counterpart, with error bars representing 68% confidence intervals.
There are relatively large differences between the different levels of
resolution at relatively small radii (r < 30 kpc), while differences
are much less substantial farther away from Galactic Centre. With
a gravitational softening length∼ 1 kpc and baryonic sub-grid rou-
tines tailored specifically to the highest resolution simulation. This
lack of convergence on small scales is not surprising. For instance,
Schaller et al. (2016) show that the dark matter density profiles of
Eagle galaxy haloes are only converged at ≈ 20 kpc (their fig. 3).
We therefore strongly caution against extrapolating the NFW fits
presented in this paper to small radii (r . 30 kpc). If future gen-
erations of simulations provide well-converged results at smaller
radii, the dark matter fraction within ∼ 2 disc scale lengths will
likely provide important constraints on feedback models (Courteau
& Dutton 2015).

The circular velocity profiles, Vcirc(r), corresponding to the
cumulative mass profiles of Fig. 1 are shown in the left-hand panel
of Fig. 2. This highlights the large difference in the two determina-
tions of the MW potential, as well as how this difference persists in
predicted profiles out to 300 kpc. It is only at distances > 250 kpc
that the 68% confidence intervals begin to overlap.

The distribution of mass among dark matter, stars, and gas
within any given radius is interesting to consider: observationally,
we can measure the stellar mass with reasonable accuracy and in-
fer the dark matter mass, but constraining the distribution of the
Galaxy’s gaseous component at large distances is much more diffi-
cult (see, e.g., Gupta et al. 2012; Fang et al. 2013). In the right-hand
panel of Fig. 2, we plot the circular velocity profile decomposed
into the contributions from each of these components. Dark mat-
ter dominates the potential at all radii we study, and while stars
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Figure 1. Top: the mass distribution M(< r) derived from Illustris-1, using the D12 (left) and G14 (right) constraints on M(<50 kpc). Error bars represent
68% confidence intervals. The grey lines show best-fitting NFW profiles for the full mass distribution (dark matter and baryonic); the NFW fit parameters are
given in the figure. The two constraints result in very different estimates of M200,c; the concentration parameters are less disparate. Bottom: residuals between
the mass distribution obtained from Illustris-1 and Illustris-2 (black circles) or Illustris-3 (grey triangles). At r < 30 kpc, systematic differences are evident;
these likely result from a combination of numerical resolution and differences in the stellar masses at fixed halo mass. Small differences of 2-5% exist at larger
radii; however, such deviations are much smaller than the uncertainties we derive in Table 1.
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Figure 2. Circular velocity curves. Left: Vcirc(r) for the mass profiles given in Fig. 1. The overall mass profile using G14’s constraint is lower at every
Galactocentric distance compared to the profile derived using the D12 constraint, and the 68% confidence intervals are disjoint up to 280 kpc. Right: a
decomposition of the circular velocity profile derived using the D12 constraint (black points in the left panel of Fig. 1) into separate contributions from dark
matter (black), stars (blue) and gas (red). At all radii probed here, dark matter dominates. The contribution from gas matches that from stars near a halo-centric
distance of 100 kpc.
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Figure 3. The probability distribution of M(< 100 kpc) derived from the
G14 (squares, connected by dashed lines) and D12 (circles, connected by
solid lines) constraints on M(< 50 kpc). The colours represent the indi-
vidual resolution levels: Illustris-1 (black), Illustris-2 (blue), and Illustris-3
(red). The excellent agreement across the three levels of resolution indicates
that the total mass profiles are well-converged in Illustris.

substantially outweigh the gas for r . 50 kpc, the two contribute
approximately the same mass by r ≈ 100 kpc.

3.2 Mass constraints within specific radii

In this subsection, we explore predictions for enclosed masses at
specific radii in more detail. In particular, we are interested in un-
derstanding how observational constraints at M(< 50 kpc) trans-
late into inferences on masses at other radii. We consider both in-
dividual physical radii (in particular, 100 and 250 kpc) and vari-
ous definitions of spherical overdensity masses (M200,c, Mvir, and
M200,m).

Fig. 3 presents the probability distribution forM(<100 kpc),
with black, blue, and red symbols representing Illustris-1, Illustris-
2, and Illustris-3 respectively. The results using the D12 constraint
on M(< 50 kpc) are presented as circles connected with solid
lines, while those using the G14 constraint are shown as squares
with dashed connecting lines. As expected, and shown previously,
the D12 constraint onM(<50 kpc) results in a significantly higher
predicted total mass within 100 kpc (approximately 0.2 dex). The
smaller (relative) error quoted in D12 also results in a narrower dis-
tribution for M(<100 kpc).

Perhaps the most important aspect of Fig. 3 is the excellent
convergence seen across the three Illustris simulations (a factor of
64 in mass resolution and 4 in force resolution). Not only is the
peak or median value well converged, the entire distribution is es-
sentially identical in each case. This indicates that, while masses
on small scales (10–30 kpc) are affected by resolution and bary-
onic physics, enclosed masses at larger radii are not subject to such
effects. The consistency of the mass distributions at large radii, sub-
ject to a constraint at 50 kpc, points to robustness of our technique
for constraining the mass distribution of the MW.

Inferred values of aperture masses within 100 and 250 kpc and
three different spherical overdensity masses, along with 68% and

Table 1. Median values, along with 68% and 90% confidence intervals,
for mass measures explored in this paper; all masses are expressed in units
of 1012 M�. In each case, we calculate values using constraints from both
D12 (column 2) and G14 (column 3) on each of the three Illustris resolution
levels. Good convergence across the three levels of resolution is evident.

D12 G14

Illustris-1

M200,c 1.12
+0.370 (0.747)
−0.240 (0.357)

0.612
+0.196 (0.384)
−0.148 (0.227)

Mvir 1.30
+0.511 (1.12)
−0.304 (0.445)

0.711
+0.251 (0.522)
−0.179 (0.274)

M200,m 1.48
+0.642 (1.49)
−0.361 (0.536)

0.798
+0.306 (0.632)
−0.213 (0.319)

M(< 100 kpc) 0.695
+0.091 (0.166)
−0.090 (0.149)

0.443
+0.087 (0.148)
−0.076 (0.127)

M(< 250 kpc) 1.22
+0.334 (0.631)
−0.236 (0.355)

0.736
+0.209 (0.406)
−0.164 (0.255)

Illustris-2

M200,c 1.06
+0.296 (0.674)
−0.196 (0.297)

0.597
+0.166 (0.340)
−0.134 (0.206)

Mvir 1.24
+0.419 (0.954)
−0.243 (0.366)

0.691
+0.213 (0.430)
−0.163 (0.250)

M200,m 1.40
+0.490 (1.19)
−0.306 (0.442)

0.766
+0.253 (0.543)
−0.186 (0.283)

M(< 100 kpc) 0.678
+0.090 (0.164)
−0.078 (0.129)

0.444
+0.077 (0.144)
−0.077 (0.124)

M(< 250 kpc) 1.17
+0.283 (0.588)
−0.194 (0.293)

0.714
+0.184 (0.360)
−0.148 (0.229)

Illustris-3

M200,c 1.09
+0.332 (0.626)
−0.193 (0.304)

0.614
+0.170 (0.332)
−0.135 (0.214)

Mvir 1.29
+0.441 (0.853)
−0.249 (0.386)

0.712
+0.220 (0.434)
−0.160 (0.253)

M200,m 1.46
+0.562 (1.252)
−0.293 (0.450)

0.804
+0.256 (0.519)
−0.190 (0.298)

M(< 100 kpc) 0.685
+0.092 (0.183)
−0.080 (0.134)

0.444
+0.078 (0.133)
−0.073 (0.122)

M(< 250 kpc) 1.20
+0.300 (0.546)
−0.192 (0.302)

0.741
+0.178 (0.342)
−0.148 (0.238)

90% confidence intervals, are given in Table 1. The estimated virial
mass, Mvir, using D12 is 1.3 × 1012 M�, with a 90% confidence
interval of 0.86 − 2.3 × 1012 M�. This is similar to the result of
Boylan-Kolchin et al. (2013), who found a 90% confidence interval
of 1.0 − 2.4 × 1012 M� for Mvir based on the dynamics of the
Leo I satellite galaxy. Using the G14 estimate of M(< 50 kpc),
we find a median value of Mvir = 0.71 × 1012 M� with a 90%
confidence interval of 0.44 − 1.2 × 1012 M�, both of which are
substantially lower than our inference based on the results of D12.
These results highlight the importance of accurate determinations
of M(< 50 kpc) for understanding the large-scale properties of
the MW. We note that the 99.95% confidence interval for haloes
consistent with the D12 constraint is 5.17 × 1011 < M200,c <
5.06×1012 M� (the range for the G14 constraint is 2.12×1011 <
M200,c < 3.48 × 1012 M�), confirming that our range of 1011 ≤
M200,c ≤ 1013 M� is more than sufficient for inferences about the
mass of the MW.

Given the uncertainties in M(< 50 kpc), it is also important
to understand how inferences of spherical overdensity masses de-
pend on M(< 50 kpc). To do this, we assume that M(< 50 kpc)
can be measured with an accuracy of 10% (i.e., X ± 0.1X) and
compute the resulting median value and 68% confidence intervals
for M200,c. The resulting dependence of M200,c on M(< 50 kpc)
is shown in Fig. 4, where the error bars show 68% confidence in-
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Figure 4. The dependence of the inferred value of M200,c on the input
(measured) value of M(< 50 kpc). The data points with error bars show
values of M200,c based on our weighting procedure, assuming a 10% error
in M(< 50 kpc). The G14 and D12 determinations of M(< 50 kpc) are
highlighted with yellow and magenta vertical bands, respectively, with the
widths of the bands showing the 68% confidence intervals. The best-fitting
log-quadratic relation between M(< 50 kpc) and M200,c (given in equa-
tion 2) is plotted as a solid grey line, while the dashed grey line shows the
fit to the unweighted data; see the text for details. This relation can be used
to map any constraint on M(<50 kpc) to an inferred value of M200,c.

tervals. It is clear that there is a strong correlation between M(<
50 kpc) and M200,c. We fit this with a quadratic function in log
space:

log10

(
M200,c

M�

)
= A+B µ+ C µ2 , (2)

µ = log10

(
M(< 50 kpc)

4× 1011 M�

)
.

Fitting to the weighted results plotted in Fig. 4, we find A =
12.0, B = 1.60, C = 0.373 with an rms scatter of 0.069, whereas
fitting the unweighted data, we find A = 12.0, B = 1.62, C =
0.325 with an rms scatter of 0.067. The latter is offset slightly
higher at fixed M(< 50 kpc), as the weighted results naturally
involve averaging over the dark halo mass function within each
bin, which is a steeply declining function of mass, whereas the un-
weighted results do not.

Equation 2 can be used to convert any constraint on M(<
50 kpc) into a constraint on M200,c. It is also straightforward to
convert this fit to a constraint on Mvir or M200,m, as Mvir ≈
1.17M200,c and M200,m ≈ 1.32M200,c for the typical mass pro-
files in Illustris. If Equation 2 or a similar relation holds broadly
for other hydrodynamic simulations with different galaxy forma-
tion physics implementations, then it will be of tremendous value
for MW mass inference studies. We plan to examine this issue in
more detail in future work (and see further discussion below).

3.3 The Impact of Baryonic Physics

Our primary analysis, presented over the previous subsections,
makes use of the highest resolution Illustris simulation. This, and

all other hydrodynamic simulations of the evolution of a represen-
tative galaxy population over cosmic time, require a number of as-
sumptions in order to produce a realistic set of galaxies. One of
the primary calibrations for Illustris, for example, was to match the
z = 0 galaxy stellar mass function. As shown in fig. 7 of Vogels-
berger et al. (2014a), the galaxy formation prescriptions in Illustris
result in notable changes in the total masses of dark matter haloes
over a wide range in halo mass. Moreover, these changes depend
on specific choices made in the galaxy formation modelling, as the
galaxy formation modelling within the Eagle simulation results in
substantially different effects on halo masses (see fig. 1 of Schaller
et al. 2015).

It is not a priori obvious whether using the DMO run should
result in similar or different predictions from the fully hydrody-
namic simulation, and if the results are different, it is not clear
whether they will be higher or lower. Certainly, we expect that the
formation of a galaxy will lead to a more centrally concentrated
mass distribution relative to the DMO run, to some extent. Adi-
abatic contraction of the dark matter in response to gas cooling
will also tend to increase the amount of dark matter in the cen-
tral regions of the halo. On the other hand, it is well established
that galaxy formation must be inefficient in ΛCDM (e.g., Fukugita
& Peebles 2004), meaning that only a relatively small fraction of
the baryonic allotment of a dark matter halo (∼ 20% for MW-
mass haloes) will be converted into stars by z = 0. Strong feed-
back from galaxy formation can change the structure of dark mat-
ter haloes, reducing their mass within a given radius compared to
what would be obtained in a DMO version (e.g., Vogelsberger et al.
2014b; Schaller et al. 2015). It is therefore of great interest to study
precisely how inferences about the MW’s mass profile change from
using DMO simulations – which, for given cosmological parame-
ters, are uniquely predicted – to using cosmological hydrodynamic
simulations.

The first test we perform to gauge the effects of including
galaxy formation physics on mass inferences is to rerun our anal-
ysis on the DMO versions of Illustris. Fig. 5 shows the results
of applying the D12 constraint to Illustris-Dark-1. It can be di-
rectly compared to Fig. 1, in which the D12 constraint was ap-
plied to the hydrodynamic version of Illustris-1. Relative to the
full Illustris simulation, inferences based on the DMO version re-
sult in a significantly higher estimate of M200,c (1.5 × 1012 ver-
sus 1.1 × 1012 M�) and a significantly lower version of the NFW
concentration (c = 7.4 versus 12.3). Table 2 provides an alternate
version of Table 1 in which all constraints are obtained using the
DMO version of Illustris-1. In all cases, the net effect of using the
DMO run rather than the hydrodynamic version is to infer higher
values for a given aperture mass.

We can use the Illustris suite to perform an additional test of
the effects of galaxy formation on the mass distribution within dark
matter halos (and for accompanying inferences on the mass distri-
bution of the MW): since Illustris and Illustris-Dark share the same
initial conditions, individual dark matter halos can be matched be-
tween the two simulations (for details, see section 3.2 of Vogels-
berger et al. 2014a). In this way, we can study the effects of galaxy
formation on a halo-by halo basis by identifying the DMO analogue
of each halo in the full Illustris run and comparing the resulting
mass distributions.

Fig. 6 shows the results of this comparison, for which we
use haloes in Illustris-1 falling within the 68% confidence inter-
val of M200,c computed using the D12 constraint (see Table 1) –
assigning equal weight to all such haloes – and their counterparts
in the DMO run. The left-hand panel shows how the density pro-
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Figure 5. The cumulative mass distribution from Illustris-Dark-1 (black
points with error bars), along with the best-fitting NFW profile (grey line),
derived assuming the D12 constraint on M(< 50 kpc). This figure can be
directly compared to the left-hand panel of Fig. 1, which shows the same
quantities from the full hydrodynamic run. While both versions of Illus-
tris are well-fitted by NFW profiles, the fit parameters differ substantially
between the two: the DMO run is fitted by a higher-mass (37% higher),
lower-concentration (40% lower) halo. If DMO runs are used for modelling
the MW mass distribution based on M(< 50 kpc), or a similar constraint,
this effect must be taken into account.

files are affected at each radius. On small scales (r . 30 kpc),
the hydrodynamic run has higher densities on a halo-by-halo basis.
This is caused by the formation of the central galaxy, both through
its mass and through any adiabatic contraction. On larger scales
(r & 40 kpc), a given halo in the hydrodynamic run is less dense
than its equivalent in the DMO run by approximately 20%. This
reduction in density is likely caused by outflows and the loss of
gas mass (or the prevention of gas accretion). The effect on the
cumulative mass distribution is shown in the right-hand panel of
Fig. 6. On a halo-by-halo basis, the hydrodynamic run results in
larger masses out to ≈ 100 kpc; on larger scales, the masses in
the DMO run are larger, with the difference reaching an asymptotic
value of ≈ 10% at 250-300 kpc. As discussed in Section 4, the de-
tails of the reduction in mass may depend on the adopted models
of galaxy formation modelling.

3.4 The Stellar Mass of the Galaxy

We can also use the technique explored in the previous sections to
compute the galaxy stellar masses from Illustris that are consistent
with the adopted mass constraints at 50 kpc. Table 3 gives the
median values as well as 68% and 90% confidence intervals based
on the D12 and G14 constraints in each of the three Illustris reso-
lution levels. Unlike the total enclosed mass at large radii, which
is well-converged across the three different Illustris resolutions,
the stellar masses in these haloes increase by a factor of ∼ 2 from
Illustris-3 to Illustris-1. This difference is not large enough to be
reflected in stellar mass functions (which are reasonably similar for
the different resolution levels studied here; see, e.g., Vogelsberger
et al. 2013 and Torrey et al. 2014). It is larger than the uncertainty

Table 2. Median values, along with 68% and 90% confidence intervals,
for a variety of mass measures explored in this paper (similar to Table 1);
all values are in units of 1012 M�. In contrast to Table 1, however, these
results use the Illustris-Dark simulations.

D12 G14

Illustris-Dark-1

M200,c 1.57
+0.460 (1.28)
−0.343 (0.519)

0.836
+0.296 (0.605)
−0.220 (0.336)

Mvir 1.88
+0.676 (1.65)
−0.445 (0.654)

0.993
+0.382 (0.805)
−0.275 (0.417)

M200,m 2.15
+0.841 (1.91)
−0.545 (0.808)

1.12
+0.466 (0.997)
−0.318 (0.482)

M(< 100 kpc) 0.803
+0.116 (0.198)
−0.095 (0.161)

0.521
+0.105 (0.169)
−0.095 (0.154)

M(< 250 kpc) 1.62
+0.357 (0.830)
−0.299 (0.452)

0.971
+0.283 (0.548)
−0.231 (0.355)

Illustris-Dark-2

M200,c 1.59
+0.515 (1.48)
−0.344 (0.531)

0.838
+0.296 (0.593)
−0.219 (0.338)

Mvir 1.91
+0.712 (1.86)
−0.452 (0.681)

0.991
+0.399 (0.793)
−0.268 (0.412)

M200,m 2.18
+0.920 (2.19)
−0.565 (0.835)

1.12
+0.476 (1.02)
−0.312 (0.478)

M(< 100 kpc) 0.807
+0.116 (0.204)
−0.095 (0.161)

0.523
+0.103 (0.170)
−0.094 (0.153)

M(< 250 kpc) 1.63
+0.396 (0.968)
−0.290 (0.462)

0.971
+0.290 (0.548)
−0.221 (0.352)

Illustris-Dark-3

M200,c 1.61
+0.567 (1.39)
−0.349 (0.530)

0.859
+0.302 (0.665)
−0.231 (0.348)

Mvir 1.96
+0.760 (1.98)
−0.488 (0.708)

1.01
+0.389 (0.904)
−0.271 (0.423)

M200,m 2.23
+1.00 (2.31)
−0.601 (0.868)

1.15
+0.459 (1.09)
−0.316 (0.487)

M(< 100 kpc) 0.826
+0.115 (0.213)
−0.113 (0.177)

0.526
+0.107 (0.178)
−0.090 (0.152)

M(< 250 kpc) 1.65
+0.417 (0.901)
−0.311 (0.481)

0.988
+0.292 (0.599)
−0.225 (0.361)

Table 3. Inferred values of M?, in units of 1010 M�, using the D12 (col-
umn 2) and G14 (column 3) constraints on M(< 50 kpc). The quoted er-
rors are the 68% and 90% confidence intervals. The Illustris feedback pre-
scriptions were calibrated for the highest-resolution simulation (Illustris-1),
so perfect convergence in M? across the three simulations is not expected.

D12 G14

Illustris-1 5.04
+1.47 (2.72)
−1.32 (2.03)

2.41
+0.98 (1.74)
−0.72 (1.12)

Illustris-2 4.09
+1.19 (2.15)
−1.15 (1.66)

1.83
+0.76 (1.36)
−0.59 (0.90)

Illustris-3 2.57
+0.79 (1.52)
−0.71 (1.07)

1.03
+0.48 (0.92)
−0.35 (0.55)

on the measured M? of the MW, however: most recent estimates
for the Galaxy fall in the range M? = 5 − 6.5 × 1010 M� (e.g.,
McMillan 2011; Bovy & Rix 2013; Licquia & Newman 2015).

Differences in the simulated stellar masses at the factor of
∼ 2 level are unsurprising, as the galaxy formation models used
in the Illustris suite were calibrated at the resolution of Illustris-1;
we would not expect the same models to work identically at signif-
icantly lower resolution. Specifically, the minimum resolution re-
quired for the feedback implementation in Illustris to produce a re-
alistic galaxy population is not achieved in Illustris-3 (Vogelsberger
et al. 2013). We therefore consider the results from Illustris-1 to be
the most reasonable comparison to make with observations.

We adopt the measurement of Licquia & Newman (2015,

MNRAS 461, 3483–3493 (2016)



8 C. Taylor et al.

0 50 100 150 200 250 300
r [kpc]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

1 
- ρ

D
M

O
(r

) /
 ρ

(r
)

0 50 100 150 200 250 300
r [kpc]

0.2

0.0

0.2

0.4

0.6

1 
- M

D
M

O
(<
r)

 / 
M

(<
r)

Figure 6. Fractional differences in the density (left) and enclosed mass (right) profiles between Illustris-1 and Illustris-Dark-1, where haloes are individually
matched across the two simulations (see the text for details). Data points represent the median differences between Illustris-1 and Illustris-Dark-1, while error
bars show the central 68% range of the data. On small scales, the inclusion of baryonic physics results in more mass at a given radius owing to the formation
of the central galaxy. On large scales, however, feedback causes an overall reduction in mass on a halo-by-halo basis for the full hydrodynamic simulation
relative to the DMO run. The effect in the density profile is ∼ 20% at large radii, while the effect in the cumulative mass profile is ∼ 10% at large distances.

hereafter, LN15), in which the authors used results derived in Bovy
& Rix (2013) to obtain M? = 6.08 ± 1.14 × 1010 M�, as a rep-
resentative value of the stellar mass of the MW and use it as a ref-
erence point in what follows. Comparing this number to the results
for Illustris-1 in Table 3, we see that D12 agrees well with the ob-
served value, while G14 is substantially lower. This is not surpris-
ing, given the results of Table 1. The very low value of M200,c ob-
tained based on G14 is much lower than the typical value found for
haloes with the stellar mass of the MW via either abundance match-
ing (Guo et al. 2010; Behroozi et al. 2013; Moster et al. 2013),
galaxy-galaxy lensing (Mandelbaum et al. 2016), or satellite kine-
matics (e.g., Watkins et al. 2010; Boylan-Kolchin et al. 2013). Even
accounting for possible differences in halo masses of red and blue
galaxies at fixed stellar mass (Mandelbaum et al. 2016), the MW
would be a strong outlier if its mass is as low as the median value in-
dicated by our analysis using the G14 constraint on M(<50 kpc).

As noted in Section 2, our methodology for constraining the
mass profile of the MW is quite general. While we have focused on
constraining the total mass at large radii based on measurements of
the total mass within 50 kpc, we can instead use other quantities –
for example,M? – for our inference. Following the same procedure
outlined in Section 2, we estimate M(< 50 kpc), M(< 100 kpc),
and the three spherical overdensity masses used above based on
LN15’s determination of M?; the results are presented in the sec-
ond column of Table 4. The results are very similar to those ob-
tained using the D12 determination of M(< 50 kpc), with LN15-
based estimates being 5-7% higher (the results are approximately a
factor of 1.6–2 larger than G14-based estimates).

Since M? and M(< 50 kpc) can be considered independent
variables, we can also study the joint probability of obtaining var-
ious mass measures conditioned on M? and M(< 50 kpc). These
joint constraints, using D12’s estimate of M(< 50 kpc), are given
in the third column of Table 4. The joint constraints are simi-
lar to both the estimates using M? alone and the estimate using
M(< 50 kpc) (from D12) alone, which is a result of the good
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Figure 7. The correlation between M? and M(<50 kpc) for all haloes in
the Illustris-1 sample; the haloes are coloured by the value of M200,c. Ver-
tical shaded bands show G14 (yellow) and D12 (magenta) determinations
of M(<50 kpc) while the horizontal band shows the LN15 determination
of M? for the MW. Very few haloes agree with both the G14 measurement
of the total mass at 50 kpc and the MW’s stellar mass; many more of the
simulated galaxies match the D12 value for M(< 50 kpc) and the LN14
M? value simultaneously.

agreement of each of these estimates individually. Had we used the
G14 value ofM(<50 kpc), the constraints would have shifted sub-
stantially. This is highlighted in Fig. 7, which shows the Illustris-1
data in M? − M(< 50 kpc) space; each halo assigned a colour
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Table 4. The 68% and 90% confidence intervals of various mass measures
of the MW (all in units of 1012 M�) inferred using the LN15 measurement
of the MW’s M? alone (column 2) and jointly with the D12 constraint on
M(<50 kpc) (column 3).

P (M |M?) P (M |M?,MD12)

M200,c 1.19
+0.62 (1.44)
−0.35 (0.52)

1.13
+0.36 (0.80)
−0.22 (0.36)

Mvir 1.40
+0.81 (1.86)
−0.43 (0.64)

1.33
+0.49 (1.20)
−0.29 (0.46)

M200,m 1.60
+1.00 (2.15)
−0.53 (0.78)

1.50
+0.65 (1.66)
−0.35 (0.54)

M(< 100 kpc) 0.725
+0.179 (0.358)
−0.145 (0.231)

0.707
+0.081 (0.155)
−0.087 (0.144)

M(< 250 kpc) 1.29
+0.51 (1.08)
−0.34 (0.51)

1.23
+0.34 (0.67)
−0.21 (0.36)
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Figure 8. The precision attained in measurements of M200,c as a function
of the precision in the input constraint. We consider input constraints of the
total mass within 50, 80, and 100 kpc (black circles, red squares, and blue
triangles, respectively) to show how more precise determinations of masses
within larger radii can affect the inferred value of M200,c. The figure shows
the trade-off between precision and distance: for example, an error of 15%
in M(< 100 kpc) results in the same precision in the estimate of M200,c

as an error of 9% in M(<50 kpc).

according to its value of M200,c. The intersection of the D12 and
LN15 constraints falls along the main locus of the points while the
G14 constraint intersects the LN 15 constraint in a part of parame-
ter space with very few haloes. The D12 and LN15 measurements
are therefore in good agreement based on the Illustris haloes, while
the G14 and LN15 measurements are not.

4 DISCUSSION AND FUTURE PROSPECTS

As larger samples of halo stars at greater distances become avail-
able, it may become possible to constrain the mass of the MW en-
closed within 80 or even 100 kpc (see, e.g., Gnedin et al. 2010;
Cohen et al. 2015 for initial work in this direction). Such measure-
ments would have the benefit of providing stronger constraints on
the virial mass of the MW. Fig. 8 shows the fractional uncertainty
inM200,c as a function of the error in the mass contained within 50

(black circles), 80 (red squares), and 100 kpc (blue triangles). At
a fixed uncertainty in M(< r), the implied uncertainty in M200,c

does indeed become smaller as one moves to greater Galactocentric
distance.

The figure quantifies how improving uncertainties at a given
distance will be reflected in uncertainties on M200,c: for example,
reducing the error on M(< 50 kpc) from 10 to 5% would reduce
the error on M200,c from 28 to 23%. On the other hand, an mea-
surement of the mass within 80 kpc that is accurate to 10% results
in an error of 22% in M200,c, while the same accuracy on a mea-
surement of the mass within 100 kpc of the Galaxy would yield
errors of 19% in M200,c. The figure also shows the fundamental
limitations in extrapolating to M200,c based on measured aperture
masses within smaller radii. Some level of irreducible uncertainty
is unavoidable in standard cosmological models, as extrapolation
from mass at a given radius to the virial radius depends on the halo
concentration (e.g. Navarro et al. 1997; Bullock et al. 2001). For
example, consider the recent study of Williams & Evans (2015),
who found that M(< 50 kpc) = 4.48+0.15

−0.14 × 1011 M�, or an er-
ror of approximately 3% on M(< 50 kpc). Using this constraint,
we obtain M200,c = 1.25+0.35

−0.18 × 1012 M�; the uncertainty on the
derived value of M200,c remains large in spite of the high precision
of the input measurement. Fig. 8 makes it clear that measurements
of the mass within 50 (80, 100) kpc will result in an uncertainty on
M200,c of no better than 23% (17%, 14%).

A central assumption of the techniques we employ here is that
Illustris-1 provides a faithful representation of galaxies and the ef-
fects of galaxy formation on dark matter halo structure. Since cos-
mological hydrodynamic simulations are still at the point of relying
on subgrid models of physics, and will be for the foreseeable future,
a logical extension of our work would be to investigate predictions
in future generations of simulations to test the robustness of our re-
sults. It would also be interesting to compare the results we have
obtained with Illustris to the Eagle simulations, as the galaxy for-
mation modelling employed there is somewhat different. Given the
differences seen in the ratio of masses in hydrodynamic to DMO
simulations in Illustris versus Eagle (compare fig. 7 of Vogelsberger
et al. 2014a and fig. 1 of Schaller et al. 2015), such a comparison
would be timely.

One effect that appears to be particularly important for set-
ting the amount of mass reduction for a given halo in the hydro-
dynamic run relative to its counterpart in the DMO version is the
underlying model of AGN feedback. Vogelsberger et al. (2014b)
adopted an AGN model that drives very strong outflows, perhaps
unrealistically so (Genel et al. 2014). Forthcoming updates to the
Illustris suite will use modified versions of AGN feedback that are
less powerful and may result in different modifications of the large-
scale halo properties of galaxies, which may in turn affect how
M(<50 kpc) maps on to M200,c.

To explore the potential impact of this effect on our results,
we use the current generation of Illustris and compare the effects of
BH mass for galaxies of a fixed halo mass (we use the haloes that
are closest to the median value of M200,c found in Illustris-Dark-1
using the D12 constraint). We rank this sample according to black
hole mass and then compute the difference in mass in the hydrody-
namic simulation relative to the DMO run. There is indeed a differ-
ence: the galaxies with the highest-mass black holes show a 20%
reduction in their overall mass, on average, while the galaxies with
the lowest mass black holes see a 10% reduction in mass compared
to their DMO counterparts. The total halo mass therefore appears
to depend somewhat on the choice of black hole feedback model,
although this does not appear to be a large source of uncertainty
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in our predictions. Future generations of Illustris-like simulations
with modified black hole feedback models will allow us to directly
test the effects on inferences regarding the MW mass.

It is not entirely obvious how the effects of vigorous feedback
propagate through our analysis, as this will depend on the change
in enclosed mass within 50 kpc relative to the change in enclosed
mass within larger radii. However, given that the black hole feed-
back in the current version of Illustris may be too effective and that
the larger-mass black holes correlate with larger reductions in halo
mass as compared to lower-mass black holes, it is likely that any
modified prescriptions will result in slightly higher inferences on
the total halo mass compared to our current results, should there be
a difference.

Future work would also benefit significantly from cosmolog-
ical simulations with larger volumes and higher mass resolution.
Importance sampling relies on having a well-sampled parameter
space, which can be an issue if not many haloes match the desired
constraint(s) (see Busha et al. 2011 and González et al. 2014 for
more details). Our current analysis has many haloes contributing
significant weights: 870 and 2196 haloes contribute weights that are
at least 10% of the maximum possible weight (Wmax = 1/

√
2πσ2

from equation. 1) for the D12 and G14 constraints, respectively.
However, if we wish to add additional restrictions – based on mor-
phology, disc size, star formation history, or specific star formation
rate, for example – the sample would likely become significantly
smaller, which would be the limiting factor in the conclusions we
could draw. With larger sample sizes, such concerns would be
eliminated. From Fig. 7, joint constraints on M(< 50 kpc) and
M? are unlikely to be strongly affected by sample size unless a
much larger volume produced many haloes with much larger stel-
lar masses at fixed halo mass [in which case, the G14 measurement
of M(<50 kpc) would be more consistent with the simulation re-
sults than it is at present].

5 CONCLUSIONS

In this paper, we have explored how the Illustris suite can be used to
inform our understanding of the mass distribution around the MW.
Our main conclusions are as follows.

• The mass profiles of haloes consistent with a given constraint
on M(< 50 kpc) differ substantially between DMO and hydrody-
namic versions of Illustris. Using DMO simulations to extrapolate
from 50 kpc to larger radii results in an overestimate of the halo
mass and an underestimate of the halo concentration.
• The effects of baryonic physics on the mass distribution of

MW-like systems in Illustris are substantial: by matching haloes
between the DMO and hydrodynamic simulations, we find that the
latter have more mass on small scales and less mass on large scales.
The asymptotic difference in the total mass density at large radii is
approximately 20%.
• Since different feedback models result in very different effects

on the mass distribution of dark matter even at large distances from
halo centres (e.g., fig. 7 of Vogelsberger et al. 2014a compared to
fig. 1 of Schaller et al. 2015), it is imperative to test how inferences
on the mass of the MW depend on galaxy formation modelling.
• The mass distribution in the inner ∼ 20 kpc is not converged

in the Illustris suite [see Schaller et al. 2016 for similar results in
the Eagle simulations]; this is a much larger distance than the for-
mal convergence radius for the dark matter simulations. Results
regarding the density distribution for r . 20 kpc must therefore
be interpreted with caution, and our best-fitting NFW profiles for

the hydrodynamic simulations, which were obtained over the radial
range of 40-300 kpc, should not be extrapolated to smaller radii.
• The relationship between M(< 50 kpc) and M200,c in

Illustris-1 is well-described by a log-quadratic relationship (equa-
tion. 2). This relationship enables the translation of any existing or
future constraint on M(<50 kpc) into a measurement M200,c.
• The constraints onM(<50 kpc) derived by D12 (4.2±0.4×

1011 M�) and G14 (2.9 ± 0.4 × 1011 M�) predict very different
values for the virial mass of the Galaxy’s halo when using Illustris:
for D12, we find M200,c = 1.12+0.37

−0.24 × 1012 M� (68% confi-
dence), while for G14, we find M200,c = 0.612+0.196

−0.148 × 1012 M�
(68% confidence). The values for Mvir and M200,m are 17% and
32% larger, respectively.
• Illustris haloes that have galaxies with stellar masses consis-

tent with measurements of the MW’s M? have significantly more
mass within 50 kpc than the result of G14; the measurements of
D12 and Williams & Evans (2015) are in much better agreement
with Illustris haloes that match the observed value ofM?. In partic-
ular, almost no haloes in Illustris jointly satisfy the G14 constraint
and the LN15 measurement of M? for the MW.
• From our analysis of the Illustris simulation, even an infinitely

precise measurement of M(< 50 kpc) would result in an uncer-
tainty of >20% in M200,c. The same uncertainty can be achieved
for 10% errors on M(< 80 kpc) or 12% errors on M(<100 kpc).
A measurement ofM(<100 kpc) that is accurate to 5% will trans-
late into 15% uncertainties on M200,c.

As ever larger and ever more realistic hydrodynamic simula-
tions become available, so too will better statistical constraints on
the mass profile of our Galaxy.
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Gómez F. A., Besla G., Carpintero D. D., Villalobos Á., O’Shea B. W., Bell
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