217 research outputs found

    Role of TIF1α as a modulator of embryonic transcription in the mouse zygote

    Get PDF
    The first events of the development of any embryo are under maternal control until the zygotic genome becomes activated. In the mouse embryo, the major wave of transcription activation occurs at the 2-cell stage, but transcription starts already at the zygote (1-cell) stage. Very little is known about the molecules involved in this process. We show that the transcription intermediary factor 1 α (TIF1α) is involved in modulating gene expression during the first wave of transcription activation. At the onset of genome activation, TIF1α translocates from the cytoplasm into the pronuclei to sites of active transcription. These sites are enriched with the chromatin remodelers BRG-1 and SNF2H. When we ablate TIF1α through either RNA interference (RNAi) or microinjection of specific antibodies into zygotes, most of the embryos arrest their development at the 2–4-cell stage transition. The ablation of TIF1α leads to mislocalization of RNA polymerase II and the chromatin remodelers SNF2H and BRG-1. Using a chromatin immunoprecipitation cloning approach, we identify genes that are regulated by TIF1α in the zygote and find that transcription of these genes is misregulated upon TIF1α ablation. We further show that the expression of some of these genes is dependent on SNF2H and that RNAi for SNF2H compromises development, suggesting that TIF1α mediates activation of gene expression in the zygote via SNF2H. These studies indicate that TIF1α is a factor that modulates the expression of a set of genes during the first wave of genome activation in the mouse embryo

    Single-Cell Profiling of Epigenetic Modifiers Identifies PRDM14 as an Inducer of Cell Fate in the Mammalian Embryo

    Get PDF
    SummaryCell plasticity or potency is necessary for the formation of multiple cell types. The mechanisms underlying this plasticity are largely unknown. Preimplantation mouse embryos undergo drastic changes in cellular potency, starting with the totipotent zygote through to the formation of the pluripotent inner cell mass (ICM) and differentiated trophectoderm in the blastocyst. Here, we set out to identify and functionally characterize chromatin modifiers that define the transitions of potency and cell fate in the mouse embryo. Using a quantitative microfluidics approach in single cells, we show that developmental transitions are marked by distinctive combinatorial profiles of epigenetic modifiers. Pluripotent cells of the ICM are distinct from their differentiated trophectoderm counterparts. We show that PRDM14 is heterogeneously expressed in 4-cell-stage embryos. Forced expression of PRDM14 at the 2-cell stage leads to increased H3R26me2 and can induce a pluripotent ICM fate. Our results shed light on the epigenetic networks that govern cellular potency and identity in vivo.Video Abstrac

    TBP homologues in embryo transcription: who does what?

    Full text link

    Teaching experience in university students using social networks

    Get PDF
    Social networks, specifically Facebook and Twitter, are currently one of the most mainstream forms of media in the world. Yet, its educational use for the dissemination of knowledge is not significantly evident. Under this premise, this report is presented, considering an experience in which teachers and university-level students used these networks as mediators of educational practices; such mediation was implemented in order to promote mobile learning as an option to facilitate the process of construction and socialization of knowledge. In this sense, the research presented aims to identify the experience and opinion of students regarding the influence of this strategy in achieving their learning. The quantitative methodology was applied through the application of a survey of students who participated and realized the importance of socialization of knowledge. The results showed favourable opinions regarding the use of these networks, highlighting the benefits of mobile learning as a way to streamline the training process. This proposal is to continue this type of strategy to promote flexible teaching-learning optionsPostprint (published version

    Genes Dev

    Get PDF
    Almost half of our genome is occupied by transposable elements. Although most of them are inactive, one type of non-long terminal repeat (LTR) retrotransposon, long interspersed nuclear element 1 (LINE1), is capable of retrotransposition. Two studies in this issue, Pezic and colleagues (pp. 1410-1428) and Castro-Diaz and colleagues (pp. 1397-1409), provide novel insight into the regulation of LINE1s in human embryonic stem cells and mouse germ cells and shed new light on the conservation of complex mechanisms to ensure silencing of transposable elements in mammals

    Genes Dev

    Get PDF
    Producing competent gametes is essential for transmitting genetic information throughout generations. Spermatogenesis is a unique example of rearrangements of genome packaging to ensure fertilization. After meiosis, spermatids undergo drastic morphological changes, perhaps the most dramatic ones occurring in their nuclei, including the transition into a protamine-packaged genome. In this issue of Genes & Development, Montellier and colleagues (pp. 1680-1692) shed new light on the molecular mechanisms regulating this transition by ascribing for the first time a function to a histone variant, TH2B, in the regulation of this process

    Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos

    Get PDF
    Upon fertilization, the gametes undergo a drastic reprogramming that includes changes in DNA methylation and histone modifications. Currently, it is not known whether replacement of the major histones by histone variants is also involved in these processes. Here we have examined the expression and localization of the histone variant H3.3 in early mouse embryogenesis. We show that H3.3 is present in the oocyte as a maternal factor. It is then incorporated preferentially into the male pronucleus before genome activation, pointing towards an asymmetry in histone composition between the two pronuclei. This is in line with the male pronucleus bearing transcriptional activation first. The same distribution was observed when we followed the localisation of a tagged version of H3.3. We detected H3.3 in the nuclei of mouse embryos in all of the stages analysed, from the zygote to the blastocyst stage, suggesting that the epigenetic mechanisms in the early embryo not only involve changes in histone modifications but may also include histone replacement

    Bone morphogenetic protein 4 signaling regulates development of the anterior visceral endoderm in the mouse embryo

    Get PDF
    The extraembryonic ectoderm (ExE) of the mouse conceptus is known to play a role in embryo patterning by signaling to the underlying epiblast and surrounding visceral endoderm. Bmp4 is one of the key ExE signaling molecules and has been recently implicated to participate in regulating development and migration of the anterior visceral endoderm (AVE). However, it remains unclear when exactly BMP4 signaling starts to regulate AVE positioning. To examine this, we have chosen to affect BMP4 function at two different time points, at embryonic day 5.25 (E5.25), thus before AVE migration, and E5.75, just after AVE migration. To this end, an RNAi technique was used, which consisted of the injection of Bmp4 dsRNA into the proamniotic cavity of the egg cylinder followed by its targeted electroporation into the ExE. This resulted in specific knockdown of Bmp4. It was found that Bmp4 RNAi at E5.25, but not at E5.75, led to an abnormal pattern of expression of the AVE marker Cerberus‐like. Thus, BMP4 signaling appears to affect the expression of Cer1 at a specific time window. This RNAi approach provides a convenient means to study spatial and temporal function of genes shortly after embryo implantation
    • 

    corecore