5 research outputs found
Uncertainty propagation in neuronal dynamical systems
One of the most notorious characteristics of neuronal electrical activity is its
variability, whose origin is not just instrumentation noise, but mainly the intrinsically
stochastic nature of neural computations. Neuronal models based
on deterministic differential equations cannot account for such variability,
but they can be extended to do so by incorporating random components.
However, the computational cost of this strategy and the storage requirements
grow exponentially with the number of stochastic parameters, quickly
exceeding the capacities of current supercomputers. This issue is critical in
Neurodynamics, where mechanistic interpretation of large, complex, nonlinear
systems is essential. In this paper we present accurate and computationally
efficient methods to introduce and analyse variability in neurodynamic
models depending on multiple uncertain parameters. Their use is illustrated
with relevant example
Sine-Gordon field theory for the calculatión of universal finite size corrections in the free energy of Coulomb systems at the Debye-Hückel regime
Magíster en FísicaMaestrí
Mecánica estadística, topología y el sonido del tambor
Se analizan los sistemas de Coulomb -salmueras y plasmas- desde puntos de vista micro y macroscópic
Mecánica estadística, tipología y el sonido del tambor
Discute algunas propiedades de estos sistemas (moléculas y átomos), en particular propiedades que dependen de su forma, o más precisamente de su tipología, lo cual nos permitirá encontrar una relación interesante entre estos sistemas, tan comunes en nuestras vidad, con conceptos metemáticos que podrían parecer lejanos a nuestra realida
Uncertainty propagation in nerve impulses through the action potential mechanism
We investigate the propagation of probabilistic uncertainty through the action potential mechanism in
nerve cells. Using the Hodgkin-Huxley (H-H) model and Stochastic
Collocation on Sparse Grids, we obtain an accurate
probabilistic interpretation of the deterministic dynamics of the transmembrane potential and gating variables.
Using Sobol indices, out of the eleven uncertain
parameters in the H-H model, we unravel two main uncertainty sources, which account
for more than 90\% of the fluctuations in neuronal responses, and have a direct biophysical
interpretation. We discuss how this interesting feature of the H-H
model allows one to
reduce greatly the probabilistic degrees of freedom in uncertainty
quantification analyses, saving CPU
time in numerical simulations, and opening possibilities for probabilistic generalisation of other
deterministic models of great importance in physiology and mathematical
neuroscience