10 research outputs found

    Benthic community structure in kelp forests from the Southern California Bight

    No full text
    The United States and Mexico share the Southern California Bight (SCB) ecosystem in the Northeast Pacific Ocean where marine wildlife and habitats historically have been disturbed by human activities. Within this ecosystem, forests of the giant kelp Macrocystis pyrifera are critical habitats that sustain diverse biological assemblages and important fishery species. We studied patterns of temporal and spatial variability within the benthic communities of five transboundary kelp forests in California (USA) and Baja California (Mexico) over a fouryear period that included a moderate El Niño event. While the benthic marine communities shared some species, they varied significantly in community structure from each other, and the degree of dissimilarity was not related to the geographic distances among the studied habitats. Rather, species richness was significantly related to local substratum rugosity, suggesting it could be used as a proxy of relative benthic biological diversity. Temporal changes in the benthic assemblages were not consistent across all forests, and contrary to observations made during previous El Niño events in the SCB, the benthic communities did not change significantly following the 2009–2010 El Niño. Such an unexpected community response may be explained by the fact that the 2009–2010 El Niño was linked to the Modoki phenomenon, where warm sea surface temperature is focused in the central equatorial Pacific and not in the eastern Pacific Ocean. We propose that long-term conservation efforts should incorporate this ecological knowledge to support science-based decisions, binational coordination of policies, and coherent management practices including the design of transboundary conservation networks as spatial management tools for the protection, conservation, and/or restoration of the SCB ecosystem.

    Marine spatial planning in a transboundary context: linking Baja California with California's network of Marine Protected Areas

    No full text
    It is acknowledged that an effective path to globally protect marine ecosystems is through the establishment of eco-regional scale networks of MPAs spanning across national frontiers. In this work we aimed to plan for regionally feasible networks of MPAs that can be ecologically linked with an existing one in a transboundary context. We illustrate our exercise in the Ensenadian eco-region, a shared marine ecosystem between the south of California, United States of America (USA), and the north of Baja California, Mexico; where conservation actions differ across the border. In the USA, California recently established a network of MPAs through the Marine Life Protection Act (MLPA), while in Mexico: Baja California lacks a network of MPAs or a marine spatial planning effort to establish it. We generated four different scenarios with Marxan by integrating different ecological, social, and management considerations (habitat representation, opportunity costs, habitat condition, and enforcement costs). To do so, we characterized and collected biophysical and socio-economic information for Baja California and developed novel approaches to quantify and incorporate some of these considerations. We were able to design feasible networks of MPAs in Baja California that are ecologically linked with California's network (met between 78.5 and 84.4% of the MLPA guidelines) and that would represent a low cost for fishers and aquaculture investors. We found that when multiple considerations are integrated more priority areas for conservation emerge. For our region, human distribution presents a strong gradient from north to south and resulted to be an important factor for the spatial arrangement of the priority areas. This work shows how, despite the constraints of a data-poor area, the available conservation principles, mapping, and planning tools can still be used to generate spatial conservation plans in a transboundary context

    Extreme Marine Heatwaves alter kelp forest community near its equatorward distribution limit

    No full text
    Climate change is increasing the frequency and severity of marine heatwaves. A recent extreme warming event (2014-2016) of unprecedented magnitude and duration in the California Current System allowed us to evaluate the response of the kelp forest community near its southern (warm) distribution limit. We obtained sea surface temperatures for the northern Pacific of Baja California, Mexico, and collected kelp forest community data at three islands, before and after the warming event. The warming was the most intense and persistent event observed to date, with low-pass anomalies 1°C warmer than the previous extremes during the 1982-1984 and 1997-1998 El Niños. The period between 2014-2017 accounted for ~50% of marine heatwaves days in the past 37 years, with the highest maximum temperature intensities peaking at 5.9°C above average temperatures for the period. We found significant declines in the number of Macrocystis pyrifera individuals, except at the northernmost island, and corresponding declines in the number of fronds per kelp individual. We also found significant changes in the community structure associated with the kelp beds: half of the fish and invertebrate species disappeared after the marine heatwaves, species with warmer affinities appeared or increased their abundance, and introduced algae, previously absent, appeared at all islands. Changes in subcanopy and understory algal assemblages were also evident; however, the response varied among islands. These results suggest that the effect of global warming can be more apparent in sensitive species, such as sessile invertebrates, and that warming-related impacts have the potential to facilitate the establishment of tropical and invasive species

    Integrating climate adaptation and transboundary management:Guidelines for designing climate-smart marine protected areas

    No full text
    Climate change poses an urgent threat to biodiversity that demands societal responses. The magnitude of this challenge is reflected in recent international commitments to protect 30% of the planet by 2030 while adapting to climate change. However, because climate change is global, interventions must transcend political boundaries. Here, using the California Bight as a case study, we provide 21 biophysical guidelines for designing climate-smart transboundary marine protected area (MPA) networks and conduct analyses to inform their application. We found that future climates and marine heatwaves could decrease ecological connectivity by 50% and hinder the recovery of vulnerable species in MPAs. To buffer the impacts of climate change, MPA coverage should be expanded, focusing on protecting critical nodes for the network and climate refugia, where impacts might be less severe. For shared ecoregions, these actions require international coordination. Our work provides the first comprehensive framework for integrating climate resilience for MPAs in transboundary ecoregions, which will support other nations’ aspirations.</p

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore