38,323 research outputs found

    A Hamiltonian functional for the linearized Einstein vacuum field equations

    Full text link
    By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form by using a conserved functional as Hamiltonian; this Hamiltonian is not the analog of the energy of the field. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained. The generator of spatial translations associated with such bracket is also obtained.Comment: 5 pages, accepted in J. Phys.: Conf. Serie

    Direct detection of exoplanet host star companion γ Cep B and revised masses for both stars and the sub-stellar object

    Get PDF
    Context. The star γ Cep is known as a single-lined spectroscopic triple system at a distance of 13.8 pc, composed of a K1 III-IV primary star with V = 3.2 mag, a stellar-mass companion in a 66-67 year orbit (Torres 2007, ApJ, 654, 1095), and a substellar companion with M_p sin i = 1.7 M_(Jup) that is most likely a planet (Hatzes et al. 2003, ApJ, 599, 1383). Aims. We aim to obtain a first direct detection of the stellar companion, to determine its current orbital position (for comparison with the spectroscopic and astrometric data), its infrared magnitude and, hence, mass. Methods. We use the Adaptive Optics camera CIAO at the Japanese 8 m telescope Subaru on Mauna Kea, Hawaii, with the semi-transparent coronograph to block most of the light from the bright primary γ Cep A, and to detect at the same time the faint companion B. In addition, we also used the IR camera Ω Cass at the Calar Alto 3.5 m telescope, Spain, to image γ Cep A and B by adding up many very short integrations (without AO). Results. γ Cep B is clearly detected on our CIAO and Ω Cass images. We use a photometric standard star to determine the magnitude of B after PSF subtraction in the Subaru image, and the magnitude difference between A and B in the Calar Alto images, and find an average value of K = 7.3 ± 0.2 mag. The separations and position angles between A and B are measured on 15 July 2006 and 11 and 12 Sept. 2006, B is slightly south of west of A. Conclusions. By combining the radial velocity, astrometric, and imaging data, we have refined the binary orbit and determined the dynamical masses of the two stars in the γ Cep system, namely 1.40 ± 0.12 M_☉ for the primary and 0.409 ± 0.018 M_☉ for the secondary (consistent with being a M4 dwarf). We also determine the minimum mass of the sub-stellar companion to be M_p sin i = 1.60 ± 0.13 M_(Jup)

    The mass function of GX 339-4 from spectroscopic observations of its donor star

    Get PDF
    We obtained 16 VLT/X-shooter observations of GX 339-4 in quiescence in the period May - September 2016 and detected absorption lines from the donor star in its NIR spectrum. This allows us to measure the radial velocity curve and projected rotational velocity of the donor for the first time. We confirm the 1.76 day orbital period and we find that K2K_2 = 219±3219 \pm 3 km s1^{-1}, γ=26±2\gamma = 26 \pm 2 km s1^{-1} and vsini=64±8v \sin i = 64 \pm 8 km s1^{-1}. From these values we compute a mass function f(M)=1.91±0.08 Mf(M) =1.91 \pm 0.08~M_{\odot}, a factor 3\sim 3 lower than previously reported, and a mass ratio q=0.18±0.05q = 0.18 \pm 0.05. We confirm the donor is a K-type star and estimate that it contributes 4550%\sim 45-50\% of the light in the JJ- and H-band. We constrain the binary inclination to 37<i<7837^\circ < i < 78^\circ and the black hole mass to 2.3 M<MBH<9.5 M2.3~M_{\odot} < M_\mathrm{BH} < 9.5~M_{\odot}. GX 339-4 may therefore be the first black hole to fall in the 'mass-gap' of 25 M2-5~M_{\odot}.Comment: 11 pages, 7 figures, accepted for publication in Ap

    Characterisation of a candidate dual AGN

    Get PDF
    We present Chandra and optical observations of a candidate dual AGN discovered serendipitously while searching for recoiling black holes via a cross-correlation between the serendipitous XMM source catalog (2XMMi) and SDSS-DR7 galaxies with a separation no larger than ten times the sum of their Petrosian radii. The system has a stellar mass ratio M1_{1}/M20.7_{2}\approx 0.7. One of the galaxies (Source 1) shows clear evidence for AGN activity in the form of hard X-ray emission and optical emission-line diagnostics typical of AGN ionisation. The nucleus of the other galaxy (Source 2) has a soft X-ray spectrum, bluer colours, and optical emission line ratios dominated by stellar photoionisation with a "composite" signature, which might indicate the presence of a weak AGN. When plotted on a diagram with X-ray luminosity vs [OIII] luminosity both nuclei fall within the locus defined by local Seyfert galaxies. From the optical spectrum we estimate the electron densities finding n1<27_{1} < 27 e^{-} cm3^{-3} and n2200_{2} \approx 200 e^{-} cm3^{-3}. From a 2D decomposition of the surface brightness distribution we infer that both galaxies host rotationally supported bulges (Sersic index <1< 1). While the active nature of Source 1 can be established with confidence, whether the nucleus of Source 2 is active remains a matter of debate. Evidence that a faint AGN might reside in its nucleus is, however, tantalising.Comment: 16 pages, 9 figures. Accepted for publication on MNRAS. Comments welcom

    How does breakup influence the total fusion of 6,7^{6,7}Li at the Coulomb barrier?

    Full text link
    Total (complete + incomplete) fusion excitation functions of 6,7^{6,7}Li on 59^{59}Co and 209^{209}Bi targets around the Coulomb barrier are obtained using a new continuum discretized coupled channel (CDCC) method of calculating fusion. The relative importance of breakup and bound-state structure effects on total fusion is particularly investigated. The effect of breakup on fusion can be observed in the total fusion excitation function. The breakup enhances the total fusion at energies just around the barrier, whereas it hardly affects the total fusion at energies well above the barrier. The difference between the experimental total fusion cross sections for 6,7^{6,7}Li on 59^{59}Co is notably caused by breakup, but this is not the case for the 209^{209}Bi target.Comment: 9 pages, 9 figures, Submitted to Phys. Rev.
    corecore