3 research outputs found

    Immobilized soybean hull peroxidase for the oxidation of phenolic compounds in coffee processing wastewater

    Get PDF
    AbstractChitosan beads were prepared, using glutaraldehyde as a crosslinking agent for the immobilization of soybean hull peroxidase (SBP). The activity of free and immobilized SBP was studied. The optimum pH was 6.0 for both the free and immobilized enzyme; however, enzyme activity became more dependent on the temperature after immobilization. This study evaluated the potential use of immobilized and free enzyme in the oxidation of caffeic acid, of synthetic phenolic solution (SPS) and of total phenolic compounds in coffee processing wastewater (CPW). Some factors, such as reaction time, amount of H2O2 and caffeic acid were evaluated, in order to determine the optimum conditions for enzyme performance. Both enzymes showed a potential in the removal of caffeic acid, SPS and CPW, and immobilized SBP had the highest oxidation performance. The immobilized enzyme showed a potential of 50% in the oxidation of caffeic acid after 4 consecutive cycles

    Descoloração de corantes industriais e efluentes tĂȘxteis simulados por peroxidase de nabo (Brassica campestre)

    Full text link
    The removal of important textile dyes by turnip peroxidase (TNP) was evaluated. The textile effluents besides the residual dyes contain also chemical auxiliaries such as salts, dispersing and wetting agents. The effect of these was evaluated in the removal of the dyes reactive blue 21 and reactive blue 19 by TNP in synthetic effluents. A decrease of the efficency decolorization was observed. The action of the enzyme on colour removal of dye mixture was equivalent to the dyes alone. The chemical demand of oxygen in the effluent after enzymatic treatment had a significant increase in relation to the untreated effluent

    Δ-FeOOH as Support for Immobilization Peroxidase: Optimization via a Chemometric Approach

    No full text
    Owing to their high surface area, stability, and functional groups on the surface, iron oxide hydroxide nanoparticles have attracted attention as enzymatic support. In this work, a chemometric approach was performed, aiming at the optimization of the horseradish peroxidase (HRP) immobilization process on Δ-FeOOH nanoparticles (NPs). The enzyme/NPs ratio (X1), pH (X2), temperature (X3), and time (X4) were the independent variables analyzed, and immobilized enzyme activity was the response variable (Y). The effects of the factors were studied using a factorial design at two levels (−1 and 1). The biocatalyst obtained was evaluated for the ferulic acid (FA) removal, a pollutant model. The materials were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The SEM images indicated changes in material morphology. The independent variables X1 (−0.57), X2 (0.71), and X4 (0.42) presented the significance effects estimate. The variable combinations resulted in two significance effects estimates, X1*X2 (−0.57) and X2*X4 (0.39). The immobilized HRP by optimized conditions (X1 = 1/63 (enzyme/NPs ratio, X2 = pH 8, X4 = 60 °C, and 30 min) showed high efficiency for FA oxidation (82%)
    corecore