24,751 research outputs found

    Two Distinct, Geographically Overlapping Lineages of the Corallimorpharian Ricordea Florida (Cnidaria: Hexacorallia: Ricordeidae)

    Get PDF
    We examined the genetic variation of the corallimorpharian Ricordea florida; it is distributed throughout the Caribbean region and is heavily harvested for the marine aquarium trade. Eighty-four distinct individuals of R. florida were sequenced from four geographically distant Caribbean locations (Curaçao, Florida, Guadeloupe, and Puerto Rico). Analysis of the ribosomal nuclear region (ITS1, 5.8S, ITS2) uncovered two geographically partially overlapping genetic lineages in R. florida, probably representing two cryptic species. Lineage 1 was found in Florida and Puerto Rico, and Lineage 2 was found in Florida, Puerto Rico, Guadeloupe, and Curaçao. Because of the multi-allelic nature of the ITS region, four individuals from Lineage 1 and six from Lineage 2 were cloned to evaluate the levels of hidden intra-individual variability. Pairwise genetic comparisons indicated that the levels of intra-individual and intra-lineage variability (\u3c1%) were approximately an order of magnitude lower than the divergence (~9%) observed between the two lineages. The fishery regulations of the aquarium trade regard R. florida as one species. More refined regulations should take into account the presence of two genetic lineages, and they should be managed separately in order to preserve the long-term evolutionary potential of this corallimorpharian. The discovery of two distinct lineages in R. florida illustrates the importance of evaluating genetic variability in harvested species prior to the implementation of management policies

    AC transport in graphene-based Fabry-Perot devices

    Full text link
    We report on a theoretical study of the effects of time-dependent fields on electronic transport through graphene nanoribbon devices. The Fabry-P\'{e}rot interference pattern is modified by an ac gating in a way that depends strongly on the shape of the graphene edges. While for armchair edges the patterns are found to be regular and can be controlled very efficiently by tuning the ac field, samples with zigzag edges exhibit a much more complex interference pattern due to their peculiar electronic structure. These studies highlight the main role played by geometric details of graphene nanoribbons within the coherent transport regime. We also extend our analysis to noise power response, identifying under which conditions it is possible to minimize the current fluctuations as well as exploring scaling properties of noise with length and width of the systems

    A distinctive response to concanavalin A-mediated agglutination shown by cells from two different slime strains

    Get PDF
    Response of slime strains to concanavalin

    Mono-parametric quantum charge pumping: interplay between spatial interference and photon-assisted tunneling

    Full text link
    We analyze quantum charge pumping in an open ring with a dot embedded in one of its arms. We show that cyclic driving of the dot levels by a \textit{single} parameter leads to a pumped current when a static magnetic flux is simultaneously applied to the ring. Based on the computation of the Floquet-Green's functions, we show that for low driving frequencies ω0\omega_0, the interplay between the spatial interference through the ring plus photon-assisted tunneling gives an average direct current (dc) which is proportional to ω02\omega_0^{2}. The direction of the pumped current can be reversed by changing the applied magnetic field.Comment: 7 pages, 4 figures. To appear in Phys. Rev.

    Characterization of glycospingolipids in Neurospora crassa

    Get PDF
    Characterization of glycospingolipids in Neurospora crass

    Search for associations containing young stars (SACY). VI. Is multiplicity universal? Stellar multiplicity in the range 3-1000 au from adaptive-optics observations

    Full text link
    Context. Young loose nearby associations are unique samples of close (<150 pc), young (approx 5-100 Myr) pre-main sequence (PMS) stars. A significant number of members of these associations have been identified in the SACY collaboration. We can use the proximity and youth of these members to investigate key ingredients in star formation processes, such as multiplicity. Aims. We present the statistics of identified multiple systems from 113 confirmed SACY members. We derive multiplicity frequencies, mass-ratio, and physical separation distributions in a consistent parameter space, and compare our results to other PMS populations and the field. Methods. We have obtained adaptive-optics assisted near-infrared observations with NACO (ESO/VLT) and IRCAL (Lick Observatory) for at least one epoch of all 113 SACY members. We have identified multiple systems using co-moving proper-motion analysis and using contamination estimates. We have explored ranges in projected separation and mass-ratio of a [3-1000 au], and q [0.1-1], respectively. Results. We have identified 31 multiple systems (28 binaries and 3 triples). We derive a multiplicity frequency (MF) of MF_(3-1000au)=28.4 +4.7, -3.9% and a triple frequency (TF) of TF_(3-1000au)=2.8 +2.5, -0.8% in the separation range of 3-1000 au. We do not find any evidence for an increase in the MF with primary mass. The estimated mass-ratio of our statistical sample (with power-law index gamma=-0.04 +/- 0.14) is consistent with a flat distribution (gamma = 0). Conclusions. We show further similarities (but also hints of discrepancies) between SACY and the Taurus region: flat mass-ratio distributions and statistically similar MF and TF values. We also compared the SACY sample to the field (in the separation range of 19-100 au), finding that the two distributions are indistinguishable, suggesting a similar formation mechanism.Comment: 16 Pages, accepted in A&A 28 May 201

    Magnetic moments of the low-lying JP= 1/2−J^P=\,1/2^-, 3/2−3/2^- Λ\Lambda resonances within the framework of the chiral quark model

    Full text link
    The magnetic moments of the low-lying spin-parity JP=J^P= 1/2−1/2^-, 3/2−3/2^- Λ\Lambda resonances, like, for example, Λ(1405)\Lambda(1405) 1/2−1/2^-, Λ(1520)\Lambda(1520) 3/2−3/2^-, as well as their transition magnetic moments, are calculated using the chiral quark model. The results found are compared with those obtained from the nonrelativistic quark model and those of unitary chiral theories, where some of these states are generated through the dynamics of two hadron coupled channels and their unitarization

    Tipos de lesiones de Piricularia en trigo.

    Get PDF
    bitstream/item/144811/1/ID43672-2016CTO355.pd
    • 

    corecore