2,343 research outputs found

    The critical coupling likelihood method: a new approach for seamless integration of environmental and operating conditions of gravitational wave detectors into gravitational wave searches

    Get PDF
    Any search effort for gravitational waves (GWs) using interferometric detectors like LIGO needs to be able to identify if and when noise couples into the detector’s output signal. The critical coupling likelihood (CCL) method has been developed to characterize potential noise coupling and in the future aid GW search efforts. By testing two hypotheses about pairs of channels, CCL is able to identify undesirable coupled instrumental noise from potential GW candidates. Our preliminary results show that CCL can associate up to ∼80% of observed artifacts with SNR ⩾ 8 with local noise sources, while reducing the duty cycle of the instrument by ≲ 15%. An approach like CCL will become increasingly important as GW research moves into the advanced LIGO era, going from the first GW detection to GW astronomy

    Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions

    Full text link
    Transport sector constitutes the second largest source of global greenhouse gas (GHG) emissions, being the road transportation the main contributor of these emissions. Efforts in the road sector have traditionally focused on vehicle emissions and infrastructure is typically not included in the emissions account. Road environmental impact is estimated to increase by 10% if the stages of road design, construction, and operation were considered. Previous literature has widely study sustainable practices in pavement design and construction, with little attention paid to maintenance. Current state of practice reveals that pavement managers barely consider environmental performance and their evaluations solely rely on technical and economic criteria. This situation creates the need to incorporate, in an integrated manner, technical, economic, and environmental aspects in the design of maintenance programs. The main objective of this research is to develop a tool for the optimal design of sustainable maintenance programs. Given a maintenance budget, the tool aims to maximize the long-term effectiveness of the network while minimizing GHG emissions derived from the application of maintenance treatments. The capability of the proposed tool is analyzed in a case study dealing with an urban pavement network. In comparison to the traditional maintenance policy, the proposed tool designs maintenance programs that increase the average network condition by up to 22% and reduces GHG emissions by 12%. This application also analyzes the effect of different budgetary scenarios in the technical and environmental performance of the network. This application helps pavement managers in the trade-off between budget and network performance.The authors gratefully acknowledge members of the research group at the Pontificia Universidad Catolica de Chile for providing information concerning the case study analyzed in this paper. The research team acknowledges Fondef/Conicyt 2009 for funding the project "Research and Development of Solutions for Urban Pavement Management in Chile" (D0911018) and the National Research Center for Integrated Natural Disaster Management CONICYT/FONDAP/15110017. Funding from CONICYT (CONICYT-PCHA/Doctorado Nacional/2013-63130138) to support this work is sincerely appreciated.Torres Machí, C.; Pellicer Armiñana, E.; Yepes, V.; Chamorro, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production. 148:90-102. https://doi.org/10.1016/j.jclepro.2017.01.100S9010214

    The Critical Coupling Likelihood Method: A new approach for seamless integration of environmental and operating conditions of gravitational wave detectors into gravitational wave searches

    Get PDF
    Any search effort for gravitational waves (GW) using interferometric detectors like LIGO needs to be able to identify if and when noise is coupling into the detector's output signal. The Critical Coupling Likelihood (CCL) method has been developed to characterize potential noise coupling and in the future aid GW search efforts. By testing two hypotheses about pairs of channels, CCL is able to identify undesirable coupled instrumental noise from potential GW candidates. Our preliminary results show that CCL can associate up to 80\sim 80% of observed artifacts with SNR8SNR \geq 8, to local noise sources, while reducing the duty cycle of the instrument by 15\lesssim 15%. An approach like CCL will become increasingly important as GW research moves into the Advanced LIGO era, going from the first GW detection to GW astronomy.Comment: submitted CQ

    Upper Limits on a Stochastic Background of Gravitational Waves

    Get PDF
    The Laser Interferometer Gravitational-Wave Observatory has performed a third science run with much improved sensitivities of all three interferometers. We present an analysis of approximately 200 hours of data acquired during this run, used to search for a stochastic background of gravitational radiation. We place upper bounds on the energy density stored as gravitational radiation for three different spectral power laws. For the flat spectrum, our limit of Ω

    Upper limits on gravitational wave emission from 78 radio pulsars

    Get PDF
    We present upper limits on the gravitational wave emission from 78 radio pulsars based on data from the third and fourth science runs of the LIGO and GEO 600 gravitational wave detectors. The data from both runs have been combined coherently to maximize sensitivity. For the first time, pulsars within binary (or multiple) systems have been included in the search by taking into account the signal modulation due to their orbits. Our upper limits are therefore the first measured for 56 of these pulsars. For the remaining 22, our results improve on previous upper limits by up to a factor of 10. For example, our tightest upper limit on the gravitational strain is 2.6×10−25 for PSR J1603−7202, and the equatorial ellipticity of PSR J2124–3358 is less than 10−6. Furthermore, our strain upper limit for the Crab pulsar is only 2.2 times greater than the fiducial spin-down limit

    Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals

    Get PDF
    We report on the methods and results of the first dedicated search for gravitational waves emitted during the inspiral of compact binaries with spinning component bodies. We analyze 788 hours of data collected during the third science run (S3) of the LIGO detectors. We searched for binary systems using a detection template family specially designed to capture the effects of the spin-induced precession of the orbital plane. We present details of the techniques developed to enable this search for spin-modulated gravitational waves, highlighting the differences between this and other recent searches for binaries with nonspinning components. The template bank we employed was found to yield high matches with our spin-modulated target waveform for binaries with masses in the asymmetric range 1.0M

    Balancing porosity and mechanical properties of titanium samples to favor cellular growth against bacteria

    Get PDF
    Two main problems limit the success of titanium implants: bacterial infection, which restricts their osseointegration capacity; and the stiffness mismatch between the implant and the host cortical bone, which promotes bone resorption and risk of fracture. Porosity incorporation may reduce this difference in stiffness but compromise biomechanical behavior. In this work, the relationship between the microstructure (content, size, and shape of pores) and the antibacterial and cellular behavior of samples fabricated by the space-holder technique (50 vol % NH4HCO3 and three ranges of particle sizes) is established. Results are discussed in terms of the best biomechanical properties and biofunctional activity balance (cell biocompatibility and antibacterial behavior). All substrates achieved suitable cell biocompatibility of premioblast and osteoblast in adhesion and proliferation processes. It is worth to highlighting that samples fabricated with the 100–200 μm space-holder present better mechanical behavior—in terms of stiffness, microhardness, and yield strength—which make them a very suitable material to replace cortical bone tissues. Those results exposed the relationship between the surface properties and the race of bacteria and mammalian cells for the surface with the aim to promote cellular growth over bacteria.University of Seville (Spain) VI Plan Propio de Investigación y Transferencia—US 2018, I.3A

    Modeling of leishmaniasis infection dynamics: novel application to the design of effective therapies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The WHO considers leishmaniasis as one of the six most important tropical diseases worldwide. It is caused by parasites of the genus <it>Leishmania </it>that are passed on to humans and animals by the phlebotomine sandfly. Despite all of the research, there is still a lack of understanding on the metabolism of the parasite and the progression of the disease. In this study, a mathematical model of disease progression was developed based on experimental data of clinical symptoms, immunological responses, and parasite load for <it>Leishmania amazonensis </it>in <it>BALB/c </it>mice.</p> <p>Results</p> <p>Four biologically significant variables were chosen to develop a differential equation model based on the GMA power-law formalism. Parameters were determined to minimize error in the model dynamics and time series experimental data. Subsequently, the model robustness was tested and the model predictions were verified by comparing them with experimental observations made in different experimental conditions. The model obtained helps to quantify relationships between the selected variables, leads to a better understanding of disease progression, and aids in the identification of crucial points for introducing therapeutic methods.</p> <p>Conclusions</p> <p>Our model can be used to identify the biological factors that must be changed to minimize parasite load in the host body, and contributes to the design of effective therapies.</p

    Upper limit map of a background of gravitational waves

    Get PDF
    We searched for an anisotropic background of gravitational waves using data from the LIGO S4 science run and a method that is optimized for point sources. This is appropriate if, for example, the gravitational wave background is dominated by a small number of distinct astrophysical sources. No signal was seen. Upper limit maps were produced assuming two different power laws for the source strain power spectrum. For an f−3 power law and using the 50 Hz to 1.8 kHz band the upper limits on the source strain power spectrum vary between 1.2×10−48  Hz−1 (100  Hz/f)3 and 1.2×10−47  Hz−1 (100  Hz/f)3, depending on the position in the sky. Similarly, in the case of constant strain power spectrum, the upper limits vary between 8.5×10−49  Hz−1 and 6.1×10−48  Hz−1. As a side product a limit on an isotropic background of gravitational waves was also obtained. All limits are at the 90% confidence level. Finally, as an application, we focused on the direction of Sco-X1, the brightest low-mass x-ray binary. We compare the upper limit on strain amplitude obtained by this method to expectations based on the x-ray flux from Sco-X1

    First Upper Limits from LIGO on Gravitational Wave Bursts

    Get PDF
    We report on a search for gravitational wave bursts using data from the first science run of the Laser Interferometer Gravitational Wave Observatory (LIGO) detectors. Our search focuses on bursts with durations ranging from 4 to 100 ms, and with significant power in the LIGO sensitivity band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than 1.6 events per day at a 90% confidence level. This result is interpreted in terms of the detection efficiency for ad hoc waveforms (Gaussians and sine Gaussians) as a function of their root-sum-square strain hrss; typical sensitivities lie in the range hrss∼10−19–10−17strain/√Hz, depending on the waveform. We discuss improvements in the search method that will be applied to future science data from LIGO and other gravitational wave detectors
    corecore