17 research outputs found

    Diseased muscles that lack dystrophin or laminin-α2 have altered compositions and proliferation of mononuclear cell populations

    Get PDF
    BACKGROUND: Multiple types of mononucleate cells reside among the multinucleate myofibers in skeletal muscles and these mononucleate cells function in muscle maintenance and repair. How neuromuscular disease might affect different types of muscle mononucleate cells had not been determined. In this study, therefore, we examined how two neuromuscular diseases, dystrophin-deficiency and laminin-α2-deficiency, altered the proliferation and composition of different subsets of muscle-derived mononucleate cells. METHODS: We used fluorescence-activated cell sorting combined with bromodeoxyuridine labeling to examine proliferation rates and compositions of mononuclear cells in diseased and healthy mouse skeletal muscle. We prepared mononucleate cells from muscles of mdx (dystrophin-deficient) or Lama2(-/- )(laminin-α2-deficient) mice and compared them to cells from healthy control muscles. We enumerated subsets of resident muscle cells based on Sca-1 and CD45 expression patterns and determined the proliferation of each cell subset in vivo by BrdU incorporation. RESULTS: We found that the proliferation and composition of the mononucleate cells in dystrophin-deficient and laminin-α2-deficient diseased muscles are different than in healthy muscle. The mdx and Lama2(-/- )muscles showed similar significant increases in CD45(+ )cells compared to healthy muscle. Changes in proliferation, however, differed between the two diseases with proliferation increased in mdx and decreased in Lama2(-/- )muscles compared to healthy muscles. In particular, the most abundant Sca-1(-)/CD45(- )subset, which contains muscle precursor cells, had increased proliferation in mdx muscle but decreased proliferation in Lama2(-/- )muscles. CONCLUSION: The similar increases in CD45(+ )cells, but opposite changes in proliferation of muscle precursor cells, may underlie aspects of the distinct pathologies in the two diseases

    Skeletal Muscle Phenotypically Converts and Selectively Inhibits Metastatic Cells in Mice

    Get PDF
    Skeletal muscle is rarely a site of malignant metastasis; the molecular and cellular basis for this rarity is not understood. We report that myogenic cells exert pronounced effects upon co-culture with metastatic melanoma (B16-F10) or carcinoma (LLC1) cells including conversion to the myogenic lineage in vitro and in vivo, as well as inhibition of melanin production in melanoma cells coupled with cytotoxic and cytostatic effects. No effect is seen with non-tumorigenic cells. Tumor suppression assays reveal that the muscle-mediated tumor suppressor effects do not generate resistant clones but function through the down-regulation of the transcription factor MiTF, a master regulator of melanocyte development and a melanoma oncogene. Our findings point to skeletal muscle as a source of therapeutic agents in the treatment of metastatic cancers
    corecore