9 research outputs found

    Prospects for Electron Imaging with Ultrafast Time Resolution

    Get PDF
    Many pivotal aspects of material science, biomechanics, and chemistry would benefit from nanometer imaging with ultrafast time resolution. Here we demonstrate the feasibility of short-pulse electron imaging with t10 nanometer/10 picosecond spatio-temporal resolution, sufficient to characterize phenomena that propagate at the speed of sound in materials (1-10 kilometer/second) without smearing. We outline resolution-degrading effects that occur at high current density followed by strategies to mitigate these effects. Finally, we present a model electron imaging system that achieves 10 nanometer/10 picosecond spatio-temporal resolution

    Emulation of Numerical Models With Over-Specified Basis Functions

    No full text
    <p>Mathematical models are frequently used to explore physical systems, but can be computationally expensive to evaluate. In such settings, an emulator is used as a surrogate. In this work, we propose a basis-function approach for computer model emulation. To combine field observations with a collection of runs from the numerical model, we use the proposed emulator within the Kennedy-O’Hagan framework of model calibration. A novel feature of the approach is the use of an over-specified set of basis functions where number of bases used and their inclusion probabilities are treated as unknown quantities. The new approach is found to have smaller predictive uncertainty and computational efficiency than the standard Gaussian process approach to emulation and calibration. Along with several simulation examples focusing on different model characteristics, we also use the method to analyze a dataset on laboratory experiments related to astrophysics.</p
    corecore