409 research outputs found

    Detection of the Horizontal Divergent Flow prior to the Solar Flux Emergence

    Full text link
    It is widely accepted that solar active regions including sunspots are formed by the emerging magnetic flux from the deep convection zone. In previous numerical simulations, we found that the horizontal divergent flow (HDF) occurs before the flux emergence at the photospheric height. This Paper reports the HDF detection prior to the flux emergence of NOAA AR 11081, which is located away from the disk center. We use SDO/HMI data to study the temporal changes of the Doppler and magnetic patterns from those of the reference quiet Sun. As a result, the HDF appearance is found to come before the flux emergence by about 100 minutes. Also, the horizontal speed of the HDF during this time gap is estimated to be 0.6 to 1.5 km s^-1, up to 2.3 km s^-1. The HDF is caused by the plasma escaping horizontally from the rising magnetic flux. And the interval between the HDF and the flux emergence may reflect the latency during which the magnetic flux beneath the solar surface is waiting for the instability onset to the further emergence. Moreover, SMART Halpha images show that the chromospheric plages appear about 14 min later, located co-spatial with the photospheric pores. This indicates that the plages are caused by plasma flowing down along the magnetic fields that connect the pores at their footpoints. One importance of observing the HDF may be the possibility to predict the sunspot appearances that occur in several hours.Comment: 32 pages, 8 figures, 3 tables, accepted for publication in Ap

    Contact resistivity and current flow path at metal/graphene contact

    Full text link
    The contact properties between metal and graphene were examined. The electrical measurement on a multiprobe device with different contact areas revealed that the current flow preferentially entered graphene at the edge of the contact metal. The analysis using the cross-bridge Kelvin structure (CBK) suggested that a transition from the edge conduction to area conduction occurred for a contact length shorter than the transfer length of ~1 micron. The contact resistivity for Ni was measured as ~5*10-6 Ohmcm2 using the CBK. A simple calculation suggests that a contact resistivity less than 10-9 Ohmcm2 is required for miniaturized graphene field effect transistors

    Magnetic Properties of Solar Active Regions that Govern Large Solar Flares and Eruptions

    Get PDF
    Solar flares and coronal mass ejections (CMEs), especially the larger ones, emanate from active regions (ARs). With the aim to understand the magnetic properties that govern such flares and eruptions, we systematically survey all flare events with GOES levels of >=M5.0 within 45 deg from disk center between May 2010 and April 2016. These criteria lead to a total of 51 flares from 29 ARs, for which we analyze the observational data obtained by the Solar Dynamics Observatory. More than 80% of the 29 ARs are found to exhibit delta-sunspots and at least three ARs violate Hale's polarity rule. The flare durations are approximately proportional to the distance between the two flare ribbons, to the total magnetic flux inside the ribbons, and to the ribbon area. From our study, one of the parameters that clearly determine whether a given flare event is CME-eruptive or not is the ribbon area normalized by the sunspot area, which may indicate that the structural relationship between the flaring region and the entire AR controls CME productivity. AR characterization show that even X-class events do not require delta-sunspots or strong-field, high-gradient polarity inversion lines. An investigation of historical observational data suggests the possibility that the largest solar ARs, with magnetic flux of 2x10^23 Mx, might be able to produce "superflares" with energies of order of 10^34 erg. The proportionality between the flare durations and magnetic energies is consistent with stellar flare observations, suggesting a common physical background for solar and stellar flares

    Competing Ground States of the New Class of Halogen-Bridged Metal Complexes

    Full text link
    Based on a symmetry argument, we study the ground-state properties of halogen-bridged binuclear metal chain complexes. We systematically derive commensurate density-wave solutions from a relevant two-band Peierls-Hubbard model and numerically draw the the ground-state phase diagram as a function of electron-electron correlations, electron-phonon interactions, and doping concentration within the Hartree-Fock approximation. The competition between two types of charge-density-wave states, which has recently been reported experimentally, is indeed demonstrated.Comment: 4 pages, 5 figures embedded, to appear in J. Phys. Soc. Jp

    The Relationship Between Plasma Flow Doppler Velocities and Magnetic Field Parameters During the Emergence of Active Regions at the Solar Photospheric Level

    Full text link
    A statistical study has been carried out of the relationship between plasma flow Doppler velocities and magnetic field parameters during the emergence of active regions at the solar photospheric level with data acquired by the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO). We have investigated 224 emerging active regions with different spatial scales and positions on the solar disc. The following relationships for the first hours of the emergence of active regions have been analysed: i) of peak negative Doppler velocities with the position of the emerging active regions on the solar disc; ii) of peak plasma upflow and downflow Doppler velocities with the magnetic flux growth rate and magnetic field strength for the active regions emerging near the solar disc centre (the vertical component of plasma flows); iii) of peak positive and negative Doppler velocities with the magnetic flux growth rate and magnetic field strength for the active regions emerging near the limb (the horizontal component of plasma flows); iv) of the magnetic flux growth rate with the density of emerging magnetic flux; v) of the Doppler velocities and magnetic field parameters for the first hours of the appearance of active regions with the total unsigned magnetic flux at the maximum of their development.Comment: 14 pages, 8 figures. The results of article were presented at the ESPM-13 (12-16 September 2011, Rhodes, Greece, Abstract Book p. 102-103, P.4.13, http://astro.academyofathens.gr/espm13/documents/ESPM13_abstract_programme_book.pdf

    Photoinduced charge separation in Q1D heterojunction materials: Evidence for electron-hole pair separation in mixed-halide MXMX solids

    Full text link
    Resonance Raman experiments on doped and photoexcited single crystals of mixed-halide MXMX complexes (MM=Pt; XX=Cl,Br) clearly indicate charge separation: electron polarons preferentially locate on PtBr segments while hole polarons are trapped within PtCl segments. This polaron selectivity, potentially very useful for device applications, is demonstrated theoretically using a discrete, 3/4-filled, two-band, tight-binding, extended Peierls-Hubbard model. Strong hybridization of the PtCl and PtBr electronic bands is the driving force for separation.Comment: n LaTeX, figures available by mail from JTG ([email protected]
    • …
    corecore