3 research outputs found

    Copper-deficiency anemia after esophagectomy: A pitfall of postoperative enteral nutrition through jejunostomy

    Get PDF
    AbstractINTRODUCTIONCopper deficiency leads to functional disorders of hematopoiesis and neurological system. There have been some reports of copper deficiency occurring to the patients on enteral nutrition through a jejunostomy in long-term-care hospitals. However, it is extremely rare to find patients with copper deficiency several months after esophagectomy, regardless of enteral nutrition through the jejunostomy. To the best of our knowledge, this is the first case report of a patient who experienced copper-deficiency anemia after esophagectomy and subsequent enteral nutrition through the jejunostomy.PRESENTATION OF CASEA 73-year-old man presented with pulmonary failure after esophagectomy for esophageal cancer with video-assisted thoracoscopic surgery, and needed long-term artificial ventilator support. Nutritional management included enteral nutrition through a jejunostomy from the early postoperative period. Copper-deficiency anemia was detected 3 months postoperatively; therefore, copper supplementation with cocoa powder was performed, and both serum copper and hemoglobin levels subsequently recovered.DISCUSSIONCopper-deficiency anemia has already been reported to occur in patients receiving enteral nutrition in long-term care hospitals. However, this is the first case report of copper deficiency after esophagectomy despite administration of standard enteral nutrition through the jejunostomy for several months.CONCLUSIONIt is extremely rare to find copper-deficiency anemia several months after esophagectomy followed by enteral nutrition through the jejunostomy. However, if anemia of unknown origin occurs in such patients, copper-deficiency anemia must be considered among the differential diagnoses

    NF9 peptide specific cytotoxic T lymphocyte clone cross react to Y453F mutation of SARS-CoV-2 virus spike protein

    No full text
    The recognition by cytotoxic T cells (CTLs) is essential for the clearance of SARS-CoV-2 virus-infected cells. Several viral proteins have been described to be recognized by CTLs. Among them, the spike (S) protein is one of the immunogenic proteins. The S protein acts as a ligand for its receptors, and several mutants with different affinities for its cognate receptors have been reported, and certain mutations in the S protein, such as L452R and Y453F, have been found to inhibit the HLA-A24-restricted CTL response. In this study, we conducted a screening of candidate peptides derived from the S protein, specifically targeting those carrying the HLA-A24 binding motif. Among these peptides, we discovered that NF9 (NYNYLYRLF) represents an immunogenic epitope. CTL clones specific to the NF9 peptide were successfully established. These CTL clones exhibited the ability to recognize endogenously expressed NF9 peptide. Interestingly, the CTL clone demonstrated cross-reactivity with the Y453F peptide (NYNYLFRLF) but not with the L452R peptide (NYNYRYRLF). The CTL clone was able to identify the endogenously expressed Y453F mutant peptide. These findings imply that the NF9-specific CTL clone possesses the capability to recognize and respond to the Y453F mutant peptide.</p
    corecore