34 research outputs found

    Demonstration and partial purification of lactoperoxidase from human colostrum

    Get PDF
    AbstractA peroxidase with stability, chromatographic and immunoreactive properties similar to that of bovine lactoperoxidase has been partly purified from human colostrum. Hydrophobic interaction chromatography on Phenyl-Sepharose C1–4B gave a 10-fold purification with an apparent recovery of about 45%. The enzyme was quantitatively and specifically adsorbed to beads of anti-lactoperoxidase (bovine)-Protein A-Sepharose. No adsorption of the enzyme was observed on immunoadsorbent columns prepared with high-titre polyclonal antibodies raised against human myeloperoxidase and human eosinophile peroxidase.LactoperoxidaseHuman colostrumProtein A-SepharoseMyeloperoxidaseEosinophile peroxidas

    PKU mutation p.G46S prevents the stereospecific binding of l-phenylalanine to the dimer of human phenylalanine hydroxylase regulatory domain

    Get PDF
    Mammalian phenylalanine hydroxylase (PAH) has a potential allosteric regulatory binding site for l‐phenylalanine (l‐Phe), in addition to its catalytic site. This arrangement is supported by a crystal structure of a homodimeric truncated form of the regulatory domain of human PAH (hPAH‐RD1–118/19–118) [Patel D et al. (2016) Sci Rep doi: 10.1038/srep23748]. In this study, a fusion protein of the domain (MBP‐(pepXa)‐hPAH‐RD1–120) was overexpressed and recovered in a metastable and soluble state, which allowed the isolation of a dimeric and a monomeric fusion protein. When cleaved from MBP, hPAH‐RD forms aggregates which are stereospecifically inhibited by l‐Phe (> 95%) at low physiological concentrations. Aggregation of the cleaved dimer of the mutant form hPAH‐G46S‐RD was not inhibited by l‐Phe, which is compatible with structurally/conformationally changed βαββαβ ACT domain folds in the mutant.publishedVersio

    The assignment of the Ca2+-ATPase activity of chromaffin granules to the proton translocating ATPase

    Get PDF
    AbstractCaATP is shown to function as a substrate for the proton translocating ATPase of chromaffin granule ghosts at concentrations which are comparable to that of MgATP. Using the initial rate of the proton pump activity as the measure (ΔpH/Δt), an apparent Km-value of 139 ± 8 μM was estimated for CaATP and 59 ± 3 μM for MgATP. The maximal rate was markedly higher with MgATP than with CaATP, partly due to an inhibition of the hydrolytic activity at the higher concentrations of CaATP. The proton pump activity with CaATP was inhibited by N-ethylmaleimide and N,N'-dicyclohexylcarbodiimide at concentrations similar to that found for MgATP. No inhibition was observed with sodium vanadate in the concentration range 0–15 μM. Calmodulin and trifluoperazine had no effect on the overall ATPase activity with CaATP. These findings establish this acitivity as an intrinsic property of the chromaffin granules, i.e., linked to the H+-ATPase. No evidence was obtained for the presence of a Ca2+-translocating ATPase ((Ca2+ + Mg2+)-ATPase) in the chromaffin granules.Ca2+-ATPaseH+-ATPaseProton pumpChromaffin granuleAdrenal medull

    Phenylketonuria as a protein misfolding disease: The mutation pG46S in phenylalanine hydroxylase promotes self-association and fibril formation

    Get PDF
    AbstractThe missense mutation pG46S in the regulatory (R) domain of human phenylalanine hydroxylase (hPAH), associated with a severe form of phenylketonuria, generates a misfolded protein which is rapidly degraded on expression in HEK293 cells. When overexpressed as a MBP-G46S fusion protein, soluble and fully active tetrameric/dimeric forms are assembled and recovered in a metastable conformational state. When MBP is cleaved off, G46S undergoes a conformational change and self-associates with a lag phase and an autocatalytic growth phase (tetramers≫dimers), as determined by light scattering. The self-association is controlled by pH, ionic strength, temperature, protein concentration and the phosphorylation state of Ser16; the net charge of the protein being a main modulator of the process. A superstoichiometric amount of WT dimers revealed a 2-fold enhancement of the rate of G46S dimer self-association. Electron microscopy demonstrates the formation of higher-order oligomers and linear polymers of variable length, partly as a branching network, and partly as individual long and twisted fibrils (diameter ~145–300Å). The heat-shock proteins Hsp70/Hsp40, Hsp90 and a proposed pharmacological PAH chaperone (3-amino-2-benzyl-7-nitro-4-(2-quinolyl)-1,2-dihydroisoquinolin-1-one) partly inhibit the self-association process. Our data indicate that the G46S mutation results in a N-terminal extension of α-helix 1 which perturbs the wild-type α–β sandwich motif in the R-domain and promotes new intermolecular contacts, self-association and non-amyloid fibril formation. The metastable conformational state of G46S as a MBP fusion protein, and its self-association propensity when released from MBP, may represent a model system for the study of other hPAH missense mutations characterized by misfolded proteins

    GCK-MODY diabetes associated with protein misfolding, cellular self-association and degradation

    Get PDF
    AbstractGCK-MODY, dominantly inherited mild fasting hyperglycemia, has been associated with >600 different mutations in the glucokinase (GK)-encoding gene (GCK). When expressed as recombinant pancreatic proteins, some mutations result in enzymes with normal/near-normal catalytic properties. The molecular mechanism(s) of GCK-MODY due to these mutations has remained elusive. Here, we aimed to explore the molecular mechanisms for two such catalytically ‘normal’ GCK mutations (S263P and G264S) in the F260-L270 loop of GK. When stably overexpressed in HEK293 cells and MIN6 β-cells, the S263P- and G264S-encoded mutations generated misfolded proteins with an increased rate of degradation (S263P>G264S) by the protein quality control machinery, and a propensity to self-associate (G264S>S263P) and form dimers (SDS resistant) and aggregates (partly Triton X-100 insoluble), as determined by pulse-chase experiments and subcellular fractionation. Thus, the GCK-MODY mutations S263P and G264S lead to protein misfolding causing destabilization, cellular dimerization/aggregation and enhanced rate of degradation. In silico predicted conformational changes of the F260-L270 loop structure are considered to mediate the dimerization of both mutant proteins by a domain swapping mechanism. Thus, similar properties may represent the molecular mechanisms for additional unexplained GCK-MODY mutations, and may also contribute to the disease mechanism in other previously characterized GCK-MODY inactivating mutations

    Substrate-induced conformational transition in human phenylalanine hydroxylase as studied by surface plasmon resonance analyses: the effect of terminal deletions, substrate analogues and phosphorylation.

    No full text
    The optical biosensor technique, based on the surface plasmon resonance (SPR) phenomenon, was used for real-time measurements of the slow conformational transition (isomerization) which occurs in human phenylalanine hydroxylase (hPAH) on the binding/dissociation of L-phenylalanine (L-Phe). The binding to immobilized tetrameric wt-hPAH resulted in a time-dependent increase in the refractive index (up to approx. 3 min at 25 degrees C) with an end point of approx. 75 RU (resonance units)/(pmol subunit/mm(2)). By contrast, the contribution of binding the substrate (165 Da) to its catalytic core enzyme [DeltaN(1-102)/DeltaC(428-452)-hPAH] was only approx. 2 RU/(pmol subunit/mm(2)). The binding isotherm for tetrameric and dimeric wt-hPAH revealed a [S](0.5)-value of 98+/-7 microM (h =1.0) and 158+/-11 microM, respectively, i.e. for the tetramer it is slightly lower than the value (145+/-5 microM) obtained for the co-operative binding (h =1.6+/-0.4) of L-Phe as measured by the change in intrinsic tryptophan fluorescence. The responses obtained by SPR and intrinsic tryptophan fluorescence are both considered to be related to the slow reversible conformational transition which occurs in the enzyme upon L-Phe binding, i.e. by the transition from a low-activity state ('T-state') to a relaxed high-activity state ('R-state') characteristic of this hysteretic enzyme, however, the two methods reflect different elements of the transition. Studies on the N- and C-terminal truncated forms revealed that the N-terminal regulatory domain (residues 1-117) plus catalytic domain (residues 118-411) were required for the full signal amplitude of the SPR response. Both the on- and off-rates for the conformational transition were biphasic, which is interpreted in terms of a difference in the energy barrier and the rate by which the two domains (catalytic and regulatory) undergo a conformational change. The substrate analogue 3-(2-thienyl)-L-alanine revealed an SPR response comparable with that of L-Phe on binding to wild-type hPAH
    corecore