9 research outputs found

    Bioluminescent System of Luminous Bacteria for Detection of Microbial Contamination

    Get PDF
    Microbial contamination is usually analyzed using luciferin-luciferase system of fireflies by the detection of adenosine-5’-triphosphate (ATP). There is an opportunity to assess the bacterial contamination of various objects based on a quantitative analysis of other nucleotides. In the present study, a bioluminescent enzyme system of luminous bacteria NADH:FMN-oxidoreductase (Red) and luciferase (BLuc) was investigated to understand if it can be used for quantitative measurements of bacterial cells by nicotinamide adenine dinucleotide (NADH) and flavin mononucleotide (FMN) detection. To increase the sensitivity of bioluminescent system to FMN and NADH, optimization of assay conditions was performed by varying enzymes and substrates concentrations. The lowest limits of detection were 1.2 nM FMN and 0.1 pM NADH. Escherichia coli cells were used as a model bacterial sample. FMN and NADH extraction was made by destructing cell membrane by ultrasonication. Cell suspension was added into the reaction mixture instead of FMN and NADH, and light intensity depended on number of bacterial cells in the reaction mixture. Centrifugation of sonicated sample as an additional step of sample preparation did not improve the sensitivity of method. The experimental results showed that Red and BLuc system could detect at least 800 thousand bacterial cells mL-1 by determining concentration of NADH extracted from lysed cells, while 3.9 million cells mL-1 can be detected by determining concentration of FM

    Toxicity of Different Types of Surfactants via Cellular and Enzymatic Assay Systems

    No full text
    Surfactants have a widespread occurrence, not only as household detergents, but also in their application in industry and medicine. There are numerous bioassays for assessing surfactant toxicity, but investigations of their impact on biological systems at the molecular level are still needed. In this paper, luminous marine bacteria and their coupled NAD(P)H:FMN-oxidoreductase + luciferase (Red + Luc) enzyme system was applied to examine the effects of different types of surfactants, including cationic cetyltrimethylammonium bromide (CTAB), non-ionic polyoxyethylene 20 sorbitan monooleate (Tween 80) and anionic sodium lauryl sulfate (SLS), and to assess whether the Red + Luc enzyme system can be used as a more sensitive indicator of toxicity. It was shown that the greatest inhibitory effect of the surfactants on the activity of luminous bacteria and the Red + Luc enzyme system was in the presence of SLS samples. The calculated IC50 and EC50 values of SLS were 10βˆ’5 M and 10βˆ’2 M for the enzymatic and cellular assay systems, respectively. The results highlight the benefits of using the enzymatic assay system in ecotoxicology as a tool for revealing surfactant effects on intracellular proteins if the cellular membrane is damaged under a long-term exposure period in the presence of the surfactants. For this purpose, the bioluminescent enzyme-inhibition-based assay could be used as an advanced research tool for the evaluation of surfactant toxicity at the molecular level of living organisms due to its technical simplicity and rapid response time

    Π‘ΠΈΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½Π°Ρ систСма свСтящихся Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ для Π°Π½Π°Π»ΠΈΠ·Π° ΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠ³ΠΎ загрязнСния

    No full text
    Microbial contamination is usually analyzed using luciferin-luciferase system of fireflies by the detection of adenosine-5’-triphosphate (ATP). There is an opportunity to assess the bacterial contamination of various objects based on a quantitative analysis of other nucleotides. In the present study, a bioluminescent enzyme system of luminous bacteria NADH:FMN-oxidoreductase (Red) and luciferase (BLuc) was investigated to understand if it can be used for quantitative measurements of bacterial cells by nicotinamide adenine dinucleotide (NADH) and flavin mononucleotide (FMN) detection. To increase the sensitivity of bioluminescent system to FMN and NADH, optimization of assay conditions was performed by varying enzymes and substrates concentrations. The lowest limits of detection were 1.2 nM FMN and 0.1 pM NADH. Escherichia coli cells were used as a model bacterial sample. FMN and NADH extraction was made by destructing cell membrane by ultrasonication. Cell suspension was added into the reaction mixture instead of FMN and NADH, and light intensity depended on number of bacterial cells in the reaction mixture. Centrifugation of sonicated sample as an additional step of sample preparation did not improve the sensitivity of method. The experimental results showed that Red and BLuc system could detect at least 800 thousand bacterial cells mL-1 by determining concentration of NADH extracted from lysed cells, while 3.9 million cells mL-1 can be detected by determining concentration of FMNДля Π°Π½Π°Π»ΠΈΠ·Π° ΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠ³ΠΎ загрязнСния ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π±ΠΈΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄, основанный Π½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π°Π΄Π΅Π½ΠΎΠ·ΠΈΠ½-5’-трифосфата (АВР) с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π»ΡŽΡ†ΠΈΡ„Π΅Ρ€ΠΈΠ½- Π»ΡŽΡ†ΠΈΡ„Π΅Ρ€Π°Π·Π½ΠΎΠΉ систСмы свСтляков. БущСствуСт ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΠ°Π»ΡŒΠ½Π°Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΎΡ†Π΅Π½ΠΊΠΈ стСпСни Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ обсСмСнСнности Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² исходя ΠΈΠ· количСствСнного Π°Π½Π°Π»ΠΈΠ·Π° Π΄Ρ€ΡƒΠ³ΠΈΡ… Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ². Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ исслСдована Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ примСнСния Π±ΠΈΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½ΠΎΠΉ систСмы свСтящихся Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ NADH:FMN-оксидорСдуктаза (Red) ΠΈ Π»ΡŽΡ†ΠΈΡ„Π΅Ρ€Π°Π·Π° (BLuc) для количСствСнного Π°Π½Π°Π»ΠΈΠ·Π° Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΏΡƒΡ‚Π΅ΠΌ опрСдСлСния количСства Π½ΠΈΠΊΠΎΡ‚ΠΈΠ½Π°ΠΌΠΈΠ΄Π°Π΄Π΅Π½ΠΈΠ½Π΄ΠΈΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π° (NADH) ΠΈ Ρ„Π»Π°Π²ΠΈΠ½ΠΌΠΎΠ½ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π° (FMN) Π² ΠΎΠ±Ρ€Π°Π·Ρ†Π΅. Для увСличСния Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π±ΠΈΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½ΠΎΠΉ систСмы ΠΊ FMN ΠΈ NADH осущСствлСна оптимизация условий провСдСния Π°Π½Π°Π»ΠΈΠ·Π° ΠΏΡƒΡ‚Π΅ΠΌ ΠΏΠΎΠ΄Π±ΠΎΡ€Π° ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈ субстратов Π² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ смСси. Максимальная Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π±ΠΈΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ систСмы Red + BLuc составила 1,2 нМ FMN ΠΈ 0,1 пМ NADH. Для провСдСния количСствСнного Π°Π½Π°Π»ΠΈΠ·Π° Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ использовали ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΎΠ±Ρ€Π°Π·Π΅Ρ† – ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρƒ Escherichia coli. ЭкстрагированиС FMN ΠΈ NADH ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΡƒΡ‚Π΅ΠΌ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²Ρ‹ΠΌ Π΄Π΅Π·ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠΌ. ΠšΠ»Π΅Ρ‚ΠΎΡ‡Π½ΡƒΡŽ ΡΡƒΡΠΏΠ΅Π½Π·ΠΈΡŽ добавляли Π² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΡƒΡŽ смСсь вмСсто раствора FMN ΠΈΠ»ΠΈ NADH, ΠΏΡ€ΠΈ этом ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ свСчСния Π±ΠΈΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½ΠΎΠΉ систСмы зависСла ΠΎΡ‚ количСства Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ смСси. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΠΏΡ€ΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΡƒ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ цСнтрифугирования ΠΎΠ±Ρ€Π°Π·Ρ†Π°, ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π½ΡƒΡ‚ΠΎΠ³ΠΎ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅, Π½Π΅ ΠΏΡ€ΠΈΠ²Π΅Π»ΠΎ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π±ΠΈΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ систСмы Red + BLuc достаточно для опрСдСлСния Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 800 тыс Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² ΠΌΠΈΠ»Π»ΠΈΠ»ΠΈΡ‚Ρ€Π΅ ΠΏΡƒΡ‚Π΅ΠΌ экстрагирования NADH ΠΈΠ· Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. ΠŸΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅, основанном Π½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ FMN Π² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΌ ΠΎΠ±Ρ€Π°Π·Ρ†Π΅, Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° составила 3,9 ΠΌΠ»Π½ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π½Π° ΠΌΠΈΠ»Π»ΠΈΠ»ΠΈΡ‚

    Π‘ΠΈΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½Π°Ρ систСма свСтящихся Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ для Π°Π½Π°Π»ΠΈΠ·Π° ΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠ³ΠΎ загрязнСния

    Get PDF
    Microbial contamination is usually analyzed using luciferin-luciferase system of fireflies by the detection of adenosine-5’-triphosphate (ATP). There is an opportunity to assess the bacterial contamination of various objects based on a quantitative analysis of other nucleotides. In the present study, a bioluminescent enzyme system of luminous bacteria NADH:FMN-oxidoreductase (Red) and luciferase (BLuc) was investigated to understand if it can be used for quantitative measurements of bacterial cells by nicotinamide adenine dinucleotide (NADH) and flavin mononucleotide (FMN) detection. To increase the sensitivity of bioluminescent system to FMN and NADH, optimization of assay conditions was performed by varying enzymes and substrates concentrations. The lowest limits of detection were 1.2 nM FMN and 0.1 pM NADH. Escherichia coli cells were used as a model bacterial sample. FMN and NADH extraction was made by destructing cell membrane by ultrasonication. Cell suspension was added into the reaction mixture instead of FMN and NADH, and light intensity depended on number of bacterial cells in the reaction mixture. Centrifugation of sonicated sample as an additional step of sample preparation did not improve the sensitivity of method. The experimental results showed that Red and BLuc system could detect at least 800 thousand bacterial cells mL-1 by determining concentration of NADH extracted from lysed cells, while 3.9 million cells mL-1 can be detected by determining concentration of FMNДля Π°Π½Π°Π»ΠΈΠ·Π° ΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠ³ΠΎ загрязнСния ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π±ΠΈΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄, основанный Π½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π°Π΄Π΅Π½ΠΎΠ·ΠΈΠ½-5’-трифосфата (АВР) с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π»ΡŽΡ†ΠΈΡ„Π΅Ρ€ΠΈΠ½- Π»ΡŽΡ†ΠΈΡ„Π΅Ρ€Π°Π·Π½ΠΎΠΉ систСмы свСтляков. БущСствуСт ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΠ°Π»ΡŒΠ½Π°Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΎΡ†Π΅Π½ΠΊΠΈ стСпСни Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ обсСмСнСнности Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² исходя ΠΈΠ· количСствСнного Π°Π½Π°Π»ΠΈΠ·Π° Π΄Ρ€ΡƒΠ³ΠΈΡ… Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ². Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ исслСдована Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ примСнСния Π±ΠΈΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½ΠΎΠΉ систСмы свСтящихся Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ NADH:FMN-оксидорСдуктаза (Red) ΠΈ Π»ΡŽΡ†ΠΈΡ„Π΅Ρ€Π°Π·Π° (BLuc) для количСствСнного Π°Π½Π°Π»ΠΈΠ·Π° Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΏΡƒΡ‚Π΅ΠΌ опрСдСлСния количСства Π½ΠΈΠΊΠΎΡ‚ΠΈΠ½Π°ΠΌΠΈΠ΄Π°Π΄Π΅Π½ΠΈΠ½Π΄ΠΈΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π° (NADH) ΠΈ Ρ„Π»Π°Π²ΠΈΠ½ΠΌΠΎΠ½ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π° (FMN) Π² ΠΎΠ±Ρ€Π°Π·Ρ†Π΅. Для увСличСния Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π±ΠΈΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½ΠΎΠΉ систСмы ΠΊ FMN ΠΈ NADH осущСствлСна оптимизация условий провСдСния Π°Π½Π°Π»ΠΈΠ·Π° ΠΏΡƒΡ‚Π΅ΠΌ ΠΏΠΎΠ΄Π±ΠΎΡ€Π° ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈ субстратов Π² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ смСси. Максимальная Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π±ΠΈΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ систСмы Red + BLuc составила 1,2 нМ FMN ΠΈ 0,1 пМ NADH. Для провСдСния количСствСнного Π°Π½Π°Π»ΠΈΠ·Π° Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ использовали ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΎΠ±Ρ€Π°Π·Π΅Ρ† – ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρƒ Escherichia coli. ЭкстрагированиС FMN ΠΈ NADH ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΡƒΡ‚Π΅ΠΌ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²Ρ‹ΠΌ Π΄Π΅Π·ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Ρ‚ΠΎΡ€ΠΎΠΌ. ΠšΠ»Π΅Ρ‚ΠΎΡ‡Π½ΡƒΡŽ ΡΡƒΡΠΏΠ΅Π½Π·ΠΈΡŽ добавляли Π² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΡƒΡŽ смСсь вмСсто раствора FMN ΠΈΠ»ΠΈ NADH, ΠΏΡ€ΠΈ этом ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ свСчСния Π±ΠΈΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½ΠΎΠΉ систСмы зависСла ΠΎΡ‚ количСства Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ смСси. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΠΏΡ€ΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΡƒ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ цСнтрифугирования ΠΎΠ±Ρ€Π°Π·Ρ†Π°, ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π½ΡƒΡ‚ΠΎΠ³ΠΎ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅, Π½Π΅ ΠΏΡ€ΠΈΠ²Π΅Π»ΠΎ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π±ΠΈΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ систСмы Red + BLuc достаточно для опрСдСлСния Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 800 тыс Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² ΠΌΠΈΠ»Π»ΠΈΠ»ΠΈΡ‚Ρ€Π΅ ΠΏΡƒΡ‚Π΅ΠΌ экстрагирования NADH ΠΈΠ· Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. ΠŸΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅, основанном Π½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ FMN Π² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΌ ΠΎΠ±Ρ€Π°Π·Ρ†Π΅, Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° составила 3,9 ΠΌΠ»Π½ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π½Π° ΠΌΠΈΠ»Π»ΠΈΠ»ΠΈΡ‚

    The Effects of Commercial Pesticide Formulations on the Function of In Vitro and In Vivo Assay Systems: A Comparative Analysis

    No full text
    Pesticides are commonly used in agriculture and are an important factor of food security for humankind. However, the overuse of pesticides can harm non-target organisms, and, thus, it is vital to comprehensively study their effects on the different metabolic pathways of living organisms. In the present study, enzyme-inhibition-based assays have been used to investigate the effects of commercial pesticide formulations on the key enzymes of the organisms, which catalyze a wide variety of metabolic reactions (protein catabolism, lactic acid fermentation, alcohol metabolism, the conduction of nerve impulses, etc.). Assay conditions have been optimized, and the limitations of the methods used in the study, which are related to the choice of the solvent for commercial pesticide formulations and optical effects occurring when commercial pesticide formulations are mixed with solutions of enzymes and substrates of assay systems, have been revealed. The effects of commercial pesticide formulations on simple chemoenzymatic assay systems (single-enzyme reactions) have been compared to their effects on complex multicomponent molecular systems (multi-enzyme reactions) and organisms (luminescent bacterium). The in vitro assay systems have shown higher sensitivity to pesticide exposure than the in vivo assay system. The sensitivity of the in vitro assay systems increases with the elongation of the chain of conjugated chemoenzymatic reactions. The effects exerted by commercial pesticide formulations with the same active ingredient but produced by different manufacturers on assay system functions have been found to differ from each other

    Enzyme Inhibition-Based Assay to Estimate the Contribution of Formulants to the Effect of Commercial Pesticide Formulations

    No full text
    Pesticides can affect the health of individual organisms and the function of the entire ecosystem. Therefore, thorough assessment of the risks associated with the use of pesticides is a high-priority task. An enzyme inhibition-based assay is used in this study as a convenient and quick tool to study the effects of pesticides at the molecular level. The contribution of formulants to toxicological properties of the pesticide formulations has been studied by analyzing effects of 7 active ingredients of pesticides (AIas) and 10 commercial formulations based on them (AIfs) on the function of a wide range of enzyme assay systems differing in complexity (single-, coupled, and three-enzyme assay systems). Results have been compared with the effects of AIas and AIfs on bioluminescence of the luminous bacterium Photobacterium phosphoreum. Mostly, AIfs produce a considerably stronger inhibitory effect on the activity of enzyme assay systems and bioluminescence of the luminous bacterium than AIas, which confirms the contribution of formulants to toxicological properties of the pesticide formulation. Results of the current study demonstrate that “inert” ingredients are not ecotoxicologically safe and can considerably augment the inhibitory effect of pesticide formulations; therefore, their use should be controlled more strictly. Circular dichroism and fluorescence spectra of the enzymes used for assays do not show any changes in the protein structure in the presence of commercial pesticide formulations during the assay procedure. This finding suggests that pesticides produce the inhibitory effect on enzymes through other mechanisms

    Enzyme Inhibition-Based Assay to Estimate the Contribution of Formulants to the Effect of Commercial Pesticide Formulations

    No full text
    Pesticides can affect the health of individual organisms and the function of the entire ecosystem. Therefore, thorough assessment of the risks associated with the use of pesticides is a high-priority task. An enzyme inhibition-based assay is used in this study as a convenient and quick tool to study the effects of pesticides at the molecular level. The contribution of formulants to toxicological properties of the pesticide formulations has been studied by analyzing effects of 7 active ingredients of pesticides (AIas) and 10 commercial formulations based on them (AIfs) on the function of a wide range of enzyme assay systems differing in complexity (single-, coupled, and three-enzyme assay systems). Results have been compared with the effects of AIas and AIfs on bioluminescence of the luminous bacterium Photobacterium phosphoreum. Mostly, AIfs produce a considerably stronger inhibitory effect on the activity of enzyme assay systems and bioluminescence of the luminous bacterium than AIas, which confirms the contribution of formulants to toxicological properties of the pesticide formulation. Results of the current study demonstrate that β€œinert” ingredients are not ecotoxicologically safe and can considerably augment the inhibitory effect of pesticide formulations; therefore, their use should be controlled more strictly. Circular dichroism and fluorescence spectra of the enzymes used for assays do not show any changes in the protein structure in the presence of commercial pesticide formulations during the assay procedure. This finding suggests that pesticides produce the inhibitory effect on enzymes through other mechanisms
    corecore